Вклад ученых в развитие генетики. Невероятные открытия в генетике, которые изменят будущее человека Известные генетики

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Введение

Генетика - наука, изучающая закономерности наследственности и изменчивости.

Первоначально генетика изучала общие закономерности наследственности и изменчивости только на основании фенотипических данных.

Понимание механизмов наследственности, то есть роли генов как элементарных носителей наследственной информации, хромосомная теория наследственности и т.д. стало возможным с применением к проблеме наследственности методов цитологии, молекулярной биологии и других смежных дисциплин.

Сегодня известно, что гены реально существуют и являются специальным образом отмеченными участками ДНК или РНК -- молекулы, в которой закодирована вся генетическая информация.

1. Известные деятели в области генетики

Одними из известных ученных в области генетики были:

Грегер Мендель - занимавшийся изучением гибридизации растений. Мендель показал, что некоторые наследственные задатки не смешиваются, а передаются от родителей к потомкам в виде дискретных (обособленных) единиц. Сформулированные им закономерности наследования позже получили название законов Менделя:

А) Закон единообразия гибридов первого поколения.

Б) Закон расщепления признаков.

В) Закон независимого наследования признаков.

Томас Морган.

Томас Морган разработал теорию генов как носителей определенных наследственных свойств. На основе законов Моргана современная наука, спустя столетие строит:

Селекционную работу как с растительными, так и с животными организмами,

Эксперименты со стволовыми клетками,

Трансгенные продукты,

Генная инженерия,

Клонирование,

Диагностика генетических заболеваний.

Все это наследие трудов американского ученого, также Томас Морган предложил термин - Генетика, для обозначения новой науки.

Николай Иванович Вавилов.

Российский генетик, растениевод, географ, автор закона гомологических рядов в наследственной изменчивости организмов.

Создатель учения о биологических основах селекции и центрах происхождения и разнообразия культурных растений.

Карл Ландштейнер -- австрийский врач, химик, иммунолог, инфекционист.

Первый исследователь в области:

Иммуногематологии и иммунохимии,

Описал систему групп крови.

К сожалению, всех ученных перечислить невозможно, но их именами увековечены синдромы и болезни, которые они изучали.

2. Генетические заболевания

Генетическими - являются заболевания, которые возникают вследствие дефектов в генах, хромосомных аномалий.

Наследственными - являются заболевания, возникновение и развитие которых связано с дефектами в наследственном аппарате клеток, передаваемыми по наследству через гаметы.

У каждого здорового человека есть 6-8 поврежденных генов, однако они не нарушают функций клеток и не приводят к заболеванию, поскольку являются рецессивными. Если же человек наследует от матери и от отца два сходных аномальных гена, он заболевает. Вероятность такого совпадения чрезвычайно мала, но она резко возрастает, если родители являются родственниками (т.е. имеют схожий генотип) По этой причине высота генетический заболеваний возрастает в замкнутых группах населения.

Каждый ген в человеческом организме отвечает за выработку определенного белка. Из-за проявления поврежденного гена начинается синтез аномального белка, что приводит к нарушению функций клеток и пороку развития.

Синдром Дауна.

Синдром Дауна (трисомия по хромосоме 21) - одна из форм геномной патологии, при которой чаще всего кариотип представлен 47хромосомами вместо нормальных 46, поскольку хромосомы 21-й пары, вместо нормальных двух, представлены тремя копиями. Существует ещё две формы данного синдрома.

Синдром получил название в честь английского врача Джона Дауна, впервые описавшего его в 1866 году.

Слово «синдром» означает набор признаков или характерных черт. При употреблении этого термина предпочтительнее форма «синдром Дауна», а не «болезнь Дауна».

Физические особенности детей с синдромом Дауна.

Внешне такие детки во многом похожи на своих родителей. Однако лишняя хромосома накладывает свой характерный отпечаток.

Признаки детей с врожденным синдромом Дауна :

· голова у ребенка меньше, чем обычно;

· затылок слегка плоский;

· родничок больше, зарастает позже;

· уплощенная и широкая переносица;

· глазные щели - узкие, косо расположенные;

· уши маленькие, с вывернутым верхним краем;

· небо - узкое, сводчатое и высокое.

Прочие внешние особенности ребятишек с синдромом Дауна встречаются редко. Часто у таких ребятишек страдает сердце (порок сердца - в 40 % случаев). Другие же внутренние органы обычно соответствуют норме.

Синдром Тернера.

Чёткой связи возникновения синдрома Тёрнера с возрастом и какими-либо заболеваниями родителей не выявлено. Однако беременности обычно осложняются токсикозом, угрозой выкидыша, а роды часто бывают преждевременными и патологическими. Особенности беременностей и родов, заканчивающихся рождением ребёнка с синдромом Тёрнера, -- следствие хромосомной патологии плода. Нарушение формирования половых желёз при синдроме Тёрнера обусловлено отсутствием или структурными дефектами одной половой хромосомы (X-хромосомы).

У эмбриона первичные половые клетки закладываются почти в нормальном количестве, но во второй половине беременности происходит их быстрая инволюция (обратное развитие), и к моменту рождения ребёнка количество фолликулов в яичнике по сравнению с нормой резко уменьшено или они полностью отсутствуют. Это приводит к выраженной недостаточности женских половых гормонов, половому недоразвитию, у большинства больных -- к первичной аменорее (отсутствию менструаций) и бесплодию. Возникшие хромосомные нарушения являются причиной возникновения пороков развития. Возможно также, что сопутствующие аутосомные мутации играют определённую роль в появлении пороков развития, поскольку существуют состояния, сходные с синдромом Тёрнера, но без видимой хромосомной патологии и полового недоразвития.

При синдроме Тёрнера половые железы обычно представляют собой недифференцированные соединительнотканные тяжи, не содержащие элементов гонад. Реже встречаются рудименты яичников и элементы яичек, а также рудименты семявыносящего протока. Другие патологические данные соответствуют особенностям клинических проявлений. Наиболее важны изменения костно-суставной системы -- укорочение пястных и плюсневых костей, аплазия (отсутствие) фаланг пальцев, деформация лучезапястного сустава, остеопороз позвонков. Рентгенологически при синдроме Тёрнера турецкое седло и кости свода черепаобычно не изменены. Отмечаются пороки сердца и крупных сосудов (незаращение боталлова протока,незаращение межжелудочковой перегородки, сужение устья аорты), пороки развития почек. Проявляются рецессивные гены дальтонизма и других заболеваний.

Муковисцидоз.

В основе заболевания лежит мутация в гене CFTR, который локализован в середине длинного плеча 7-й хромосомы.

Муковисцидоз наследуется по аутосомно-рецессивному типу и регистрируется в большинстве стран Европы с частотой 1:2000 -- 1:2500 новорождённых. В России в среднем частота болезни 1:10000 новорождённых. Если оба родителя гетерозиготные(являются носителями мутировавшего гена), то риск рождения больного муковисцидозом ребёнка составляет 25 %. Носители только одного дефектного гена (аллели) не болеют муковисцидозом. По данным исследований частота гетерозиготного носительства патологического гена равна 2--5 %.

Идентифицировано около 1000 мутаций гена муковисцидоза. Следствием мутации гена является нарушение структуры и функции белка, получившего название муковисцидозного трансмембранного регулятора проводимости (МВТП). Следствием этого является сгущение секретов желез внешней секреции, затруднение эвакуации секрета и изменение его физико-химических свойств, что, в свою очередь, и обуславливает клиническую картину заболевания. Изменения в поджелудочной железе, органах дыхания, желудочно-кишечном тракте регистрируются уже во внутриутробном периоде и с возрастом пациента неуклонно нарастают. Выделение вязкого секрета экзокринными железами приводит к затруднению оттока и застою с последующим расширением выводных протоков желез, атрофией железистой ткани и развитием прогрессирующего фиброза. Активность ферментов кишечника и поджелудочной железы значительно снижена. Наряду с формированием склероза в органах имеет место нарушение функций фибробластов. Установлено, что фибробласты больных муковисцидозом продуцируют цилиарный фактор, или М-фактор, который обладает антицилиарной активностью -- он нарушает работу ресничек эпителия.

Патологические изменения.

Патологические изменения в лёгких характеризуются признаками хронического бронхита с развитием бронхоэктазов и диффузного пневмосклероза. В просвете бронхов находится вязкое содержимое слизисто-гнойного характера.

Нередкой находкой являются ателектазы и участки эмфиземы. У многих больных течение патологического процесса в лёгких осложняется наслоением бактериальной инфекции (патогенный золотистый стафилококк, гемофильная и синегнойная палочка) и формированием деструкции.

В поджелудочной железе выявляется диффузный фиброз, утолщение междольковых соединительнотканных прослоек, кистозные изменения мелких и средних протоков. В печени отмечается очаговая или диффузная жировая и белковая дистрофия клеток печени, желчные стазы в междольковых желчных протоках, лимфогистиоцитарные инфильтраты в междольковых прослойках, фиброзная трансформация и развитие цирроза.

При мекониевой непроходимости выражена атрофия слизистого слоя, просвет слизистых желез кишечника расширен, заполнен эозинофильными массами секрета, местами имеет место отёк подслизистого слоя, расширение лимфатических щелей. Нередко муковисцидоз сочетается с различными пороками развития желудочно-кишечного тракта.

Гемофилия.

Гемофилия -- наследственное заболевание, связанное с нарушением коагуляции (процессом свёртывания крови); при этом заболевании возникают кровоизлияния в суставы, мышцы и внутренние органы, как спонтанные, так и в результате травмы или хирургического вмешательства. При гемофилии резко возрастает опасность гибели пациента от кровоизлияния в мозг и другие жизненно важные органы, даже при незначительной травме. Больные с тяжёлой формой гемофилии подвергаются инвалидизации вследствие частых кровоизлияний в суставы (гемартрозы) и мышечные ткани (гематомы).

Гемофилия относится к геморрагическим диатезам, обусловленным нарушением плазменного звена гемостаза (коагулопатия).

Гемофилия появляется из-за изменения одного гена в хромосоме X. Различают три типа гемофилии (A, B, C).

· Гемофилия A (рецессивная мутация в X-хромосоме) вызывает недостаточность в крови необходимого белка -- так называемого фактора VIII (антигемофильного глобулина). Такая гемофилия считается классической, она встречается наиболее часто, у 80--85 % больных гемофилией. Тяжёлые кровотечения при травмах и операциях наблюдаются при уровне VIII фактора -- 5--20 %.

· Гемофилия B (рецессивная мутация в X-хромосоме) недостаточность фактора плазмы IX (Кристмаса). Нарушено образование вторичной коагуляционной пробки.

· Гемофилия С (аутосомный рецессивный, либо доминантный (с неполной пенетрантностью) тип наследования, то есть встречается как у мужчин так и у женщин) недостаточность фактора крови XI , известна в основном у евреев-ашкеназов. В настоящее время гемофилия С исключена из классификации, так как её клинические проявления значительно отличаются от А и В.

Болезнь Тея -- Сакса.

Классификация.

Различают три формы болезни Тея -- Сакса.

Детская форма -- через полгода после рождения у детей отмечается прогрессирующее ухудшение физических возможностей и умственных способностей: наблюдаются слепота, глухота, потеря способности глотать. В результате атрофии мышц развивается паралич. Смерть наступает в возрасте до 3--4 лет.

Подростковая форма -- развиваются моторно-когнитивные проблемы, дисфагия (нарушение глотания) дизартрия (расстройства речи), атаксия (шаткость походки), спастичность (контрактуры и параличи). Смерть наступает в возрасте до 15--16 лет.

Взрослая форма -- возникает в возрасте от 25 до 30 лет. Характеризуется симптомами прогрессирующего ухудшения неврологических функций: нарушение и шаткость походки, расстройства глотания и речи, снижение когнитивных навыков, спастичность, развитие шизофрении в форме психоза.

Клиническая картина.

Новорождённые с данным наследственным заболеванием в первые месяцы жизни развиваются нормально. Однако, в возрасте около полугода возникает регресс в психическом и физическом развитии. Ребёнок теряет зрение, слух, способность глотать. Появляются судороги. Мышцы атрофируются, наступает паралич. Летальный исход наступает в возрасте до 4 лет.

В литературе описана редкая форма позднего проявления болезни, когда клинические симптомы развиваются в возрасте 20--30 лет.

Диагностика.

Для болезни Тея--Сакса характерно наличие красного пятна, расположенного на сетчатке напротив зрачка. Это пятно можно увидеть с помощью офтальмоскопа.

В настоящее время лечение не разработано. Медицинская помощь сводится к облегчению симптомов, а в случае поздних форм болезни к задержке её развития.

Синдром Патау.

Характерным осложнением беременности при вынашивании плода с синдромом Патау является многоводие: оно встречается почти в 50 % случаев Синдрома Патау.

При синдроме Патау наблюдаются тяжелые врожденные пороки. Дети с синдромом Патау рождаются с массой тела ниже нормы (2500 г). У них выявляются умеренная микроцефалия, нарушение развития различных отделов ЦНС, низкий скошенный лоб, суженные глазные щели, расстояние между которыми уменьшено, микрофтальмия и колобома, помутнение роговицы, запавшая переносица, широкое основание носа, деформированные ушные раковины, расщелина верхней губы и нёба, полидактилия, флексорное положение кистей, короткая шея. У 80 % новорожденных встречаются пороки развития сердца: дефекты межжелудочковой и межпредсердной перегородок, транспозиции сосудов и др. Наблюдаются фиброкистозные изменения поджелудочной железы, добавочные селезёнки, эмбриональная пупочная грыжа. Почки увеличены, имеют повышенную дольчатость и кисты в корковом слое, выявляются пороки развития половых органов. Для СП характерна задержка умственного развития.

В связи с тяжёлыми врожденными пороками развития большинство детей с синдромом Патау умирают в первые недели или месяцы (95 % -- до 1 года).

Однако некоторые больные живут в течение нескольких лет. Более того, в развитых странах отмечаются тенденция увеличения продолжительности жизни больных синдромом Патау до 5 лет (около 15 % детей) и даже до 10 лет (2 -- 3 % детей).

Оставшиеся в живых страдают глубокой идиотией.

Синдром Эдвардса.

Проявления синдрома.

Дети с трисомией 18 хромосомы рождаются с низким, в среднем 2177 г. весом. При этом длительность беременности -- нормальная или даже превышает норму.

Фенотипические проявления синдрома Эдвардса многообразны. Чаще всего возникают аномалии мозгового и лицевого черепа, мозговой череп имеет долихоцефалическую форму. Нижняя челюсть и ротовое отверстие маленькие. Глазные щели узкие и короткие. Ушные раковины деформированы и в подавляющем большинстве случаев расположены низко, несколько вытянуты в горизонтальной плоскости. Мочка, а часто и козелок отсутствуют. Наружный слуховой проход сужен, иногда отсутствует.Грудина короткая, из-за чего межреберные промежутки уменьшены и грудная клетка шире и короче нормальной. В 80 % случаев наблюдается аномальное развитие стопы: пятка резко выступает, свод провисает (стопа-качалка), большой палец утолщён и укорочен. Из дефектов внутренних органов наиболее часто отмечаются пороки сердца и крупных сосудов: дефект межжелудочковой перегородки, аплазии одной створки клапанов аорты и лёгочной артерии. У всех больных наблюдаются гипоплазия мозжечка и мозолистого тела, изменения структур олив, выраженная умственная отсталость, снижение мышечного тонуса, переходящее в повышение со спастикой.

Альбинизм.

Альбинизм у человека проявляется в отсутствии нормальной пигментации на коже, волосах, радужной оболочки глаз. Эта аномалия является наследственным признаком, зависящим от присутствия рецессивного, подавляемого гена в гомозиготном состоянии.

Альбинизм у человека часто упоминается как гипопигментация. Заболевание относят к очень редким расстройствам и в разных странах показатель разный. Название заболевания происходит от латинского, что означает - белый. Большинство родителей детей с данным генетическим нарушением не имеют признаков альбинизма и обладают нормальным цветом волос, а также глаз. Родителям детей с альбинизмом необходимо быть внимательными и вовремя обращаться к врачу при появлении синяков и необычных кровотечений.

Причины альбинизма.

Альбинизм у человека выступает наследственным состоянием, которое присуще с рождения. Это состояние отмечается отсутствием меланина - пигмента, отвечающим за цвет кожи, цвет волос и глаз. Альбинизм и его причины возникновения связывают с отсутствием или блокадой фермента тирозиназы. При этом люди-родители альбиносы могут передавать ребенку эту особенность, а сами не болеть. Фермент тирозиназ очень важен для производства меланина. В переводе с греческого меланин означает черный. Чем больше меланина, тем темнее у человека кожа. Если проблем с выработкой тирозиназы нет, тогда причина альбинизма - мутация в генах. Кожа всех здоровых людей имеет меланин, а вот у альбиносов ее нет. Правда, некоторые здоровые люди обладают гораздо большим количеством меланина по сравнению с другими.

Существуют различные типы альбинизма у человека и каждый из них в разной мере связан с отсутствием пигмента. Это состояние способно сопровождаться различными проблемами со зрением, а иногда и спровоцировать рак кожи. Альбинизм наследуется ребенком, если оба родителя передали ему дефектный ген. При наличии гена у одного родителя заболевание не возникает, однако в организме присутствует мутировавший ген, который передается следующему поколению. Этому процессу дали название аутосомно-рецессивное наследование. Признаки альбинизма Альбинизм, являясь наследственным состоянием, вызывается изменением нескольких или одного гена. Данные гены берут ответственность за управление производства, а также концентрации меланина в самой радужной оболочке глаз и, конечно, коже. Поэтому у людей могут быть различные проблемы со зрением: дальнозоркость, близорукость, астигматизм (искривления хрусталика глаза). У больных способны наблюдаться непроизвольные, постоянные движения глазного яблока, которые называются нистагмами. Кожа у альбиносов нежно-розового оттенка, через которую легко просвечиваются капилляры, а волосы тонкие и очень мягкие, имеющие белый или желтоватый цвет. Признаки альбинизма выражаются в проблемах координации глаз, а также слежении и фиксации за объектами. У заболевших может понизиться глубина зрительного восприятия, способна возникнуть светобоязнь. У большинства заболевших меланина в коже нет, что вызывает солнечные ожоги и неспособность загара. Если кожу не защищать, то со временем способен развиться рак кожи.

Синдром Марфана.

Синдром Марфана - наследственное системное заболевание соединительной ткани, характеризующееся патологическими изменениями нервной системы, сердечно - сосудистой системы, опорно - двигательного аппарата и других систем и органов организма человека. Синдром Марфана наследуется по аутосомно - доминантному типу и встречается у людей всех рас, практически в одинаковом соотношении полов. Достоверно установлено, что при синдроме Марфана основной дефект напрямую связан с нарушениями коллагена, хотя и не исключается вероятность поражений эластичных волокон соединительной ткани.

Синдром Марфана причины возникновения.

Данный синдром является достаточно редким генетическим заболеванием и встречается приблизительно у 1 человека из 5000. В результате многочисленных исследований было установлено, что данное заболевание обуславливается мутированием гена белка фибриллина в пятнадцатой хромосоме, что в последствии и приводит к аномалиям в структуре и выработке фибриллина. Согласно статистических данных, в порядка 75% случаев происходит передача гена синдрома Марфана от родителей имеющих это заболевание своим детям. В оставшихся 25% случаев, когда не у одного из родителей не обнаружено данное заболевание, генетические мутации способные спровоцировать возникновение синдрома Мафана, возникают спонтанно в сперматозоиде или в яйцеклетке в момент зачатия. Причины данной мутации на сегодняшний день так до конца и не выяснены, однако с 50% долей вероятности можно утверждать, что дети рожденные с данной мутацией, передадут это заболевание своим детям Синдром Марфана симптомы и признаки Люди с синдромом Марфана достаточно часто гораздо выше своих родственников и ровесников и отличаются астеническим телосложением. При сравнении с размерами туловища, их конечности являются непропорционально длинными, причем размах рук достаточно часто гораздо больше чем их рост. Пальцы ног и рук в большинстве случаев достаточно тонкие и длинные. У людей с синдромом Марфана можно выделить схожесть черт лица: маленькая челюсть, глубоко посаженные глаза, удлиненный череп, неправильный рост зубов, высокое готическое небо. При синдроме Марфана у людей наблюдаются следующие системные заболевания организма: Со стороны скелета Помимо длинных конечностей и чрезмерного роста, синдром Марфана может вызвать такие проблемы развития скелета как искривление позвоночника (сколиоз) и деформацию передней стенки грудной клетки (“куриная грудь”, вдавленная грудь). Также у пациентов с данным синдромом общими проблемами является плоскостопие и мягкость суставов. Со стороны глаз Более 50% пациентов с синдромом Марфана имеют так называемый “вывих хрусталика“. Помимо этого у таких людей достаточно часто наблюдается близорукость (миопия), повышенное внутриглазное давление (глаукома), помутнение хрусталика (катаракта) и отслаивание сетчатки Со стороны сосудов и сердца Наиболее серьезными считаются осложнения синдрома Марфана, связанные с сердцем. Данный синдром со временем может вызвать расслоение стенки и расширение корня аорты, которая разносит кровь от сердечной мышцы по всему телу. Вследствие внезапного разрыва аорты может наступить летальный исход. Нередко наблюдаются проблемы с сердечным клапаном (чаще аортальный или/и митральный), который начинает недостаточно плотно закрываться, вследствие чего кровь течет обратно в сердце. Из - за такой утечки развивается аритмия (нерегулярные сердцебиения), одышка и шумы в сердце. Помимо этого протекающие клапаны вызывают значительное увеличение сердца, вследствие чего затрудняется его работа. Другие симптомы, способные повлиять на нервную систему, легкие и кожные покровы (особенно у подростков и маленьких детей), как правило менее серьезные и мало распространенны

Прогерия.

Прогерия - это редкое генетическое заболевание, впервые описанное Гилфордом, которое проявляется преждевременным старением организма, связанное с его недоразвитием. Прогерия классифицируется на детскую, получившую название синдрома Гетчинсона (Хатчинсона)-Гилфорда и взрослую - синдром Вернера. При этом заболевании отмечается сильное отставание в росте с самого детства, изменение структуры кожи, кахексия, отсутствие вторичных половых признаков и волос, недоразвитие внутренних органов и вид старого человека. При этом психическое состояние больного соответствует возрасту, эпифизарная хрящевая пластина закрывается рано, а тело имеет детские пропорции.

Прогерия относится к неизлечимым заболеваниям и является причиной появления серьёзного атеросклероза, что в результате развивает инсульты и различные болезни сердца. А в итоге эта генетическая патология приводит к летальному исходу, т.е. она фатальна. Как правило, ребёнок может прожить, в среднем, тринадцать лет, хотя встречаются случаи с продолжительностью жизни более двадцати.

Синдром Элерса-Данлоса.

Синдром Элерса-Данлоса - это наследственное гетерогенное заболевание, проявляющееся гиперэластичностью кожи, которое связано с дефектом в образовании коллагена. Синдром Элерса-Данлоса имеет разные типы наследования и десмогенез несовершенного вида. Эта патология зависит от отдельных мутаций и может проявляться как умеренным протеканием болезни, так и опасным для жизни. Синдром Элерса-Данлоса считается самой распространённой болезнью соединительной ткани. Особых методов лечения не существует, только терапия в виде ухода, которая может смягчить последствия патологии.

Ихтиоз является заболеванием, передающимся по наследству, так что, основная причина этой кожной болезни - это генная мутация, которая передается по наследству из поколения в поколение. Биохимия мутации к настоящему времени не расшифрована, но проявляется заболевание нарушением белкового и жирового обмена. В результате данной патологии в крови накапливаются избыток холестерина и аминокислот, что и приводит к возникновению специфической кожной реакции.

Генная мутация - основная причина ихтиоза.

У больных, имеющих генную мутацию, приводящую к развитию ихтиоза, наблюдается замедление обменных процессов, нарушение терморегуляции организма и повышение активности ферментов, принимающих участие в окислительных процессах дыхания кожи.

Кроме того, у больных ихтиозом наблюдается снижение деятельности эндокринных желез - щитовидной железы, надпочечников, половых желез. Эти симптомы могут проявляться сразу или нарастать постепенно по мере прогрессирования заболевания. В результате у больных нарастает дефицит клеточного иммунитета, снижается способность усваивать витамин A и нарушается деятельность потовых желез. А значит повышается шанс на обнаружение таких заболевания потовых желез каксирингома, экринная спираденома, гидроцистома.

Комплекс этих патологий приводит к появлению гиперкератоза - нарушении процессов ороговения кожи и служит причиной развития ихтиоза. При этом заболевании между ороговевшими чешуйками кожи накапливаются аминокислотные комплексы, которые плотно соединяют чешуйки между собой и затрудняют их отшелушивание.

Формы заболевания.

Дерматологи выделяют несколько форм ихтиоза, каждая из форм заболевания имеет специфические симптомы.

Обыкновенный или вульгарный ихтиоз.

Эта форма заболевания встречается чаще всего. Заболевание передается детям от родителей, его первые проявления можно заметить на 2 или 3 году жизни ребенка.

Симптомы обыкновенного ихтиоза - сухость кожи, образование на ее поверхности сероватых или белых чешуек. При тяжелом протекании обыкновенного ихтиоза чешуйки становятся грубыми, плотными и приобретают вид щитков коричневого цвета. При этой форме заболевания могут поражаться различные участки кожи.

Одним из симптомов обыкновенного ихтиоза является сухость кожи.

При обыкновенном ихтиозе снижается интенсивность работы потовых желез, нередко наблюдается дистрофические изменения ногтей и волос. Вульгарный ихтиоз нередко сопровождается атопическим дерматитом, себорейной экземой, а иногда и бронхиальной астмой. В летний период у больных обыкновенным ихтиозом степень выраженности симптомов снижается, а вот в холодную погоду, напротив, наблюдается обострение заболевания. Нередко, с возрастом у больных простым ихтиозом, проявления болезни становятся менее острыми.

Ихтиоз новорожденных. наследственность генетика даун синдром

Названная форма заболевания проявляется сразу после появления малыша на свет. В дерматологии выделяют две подформы этого заболевания: ихтиоз плода и эритродермию ихтиозиформную.

Ихтиоз плода, к счастью, отмечается очень редко. Заболевание начинает развиваться в период с 12 по 20 неделю внутриутробного развития. У новорожденного ребенка кожа покрыта крупными роговыми пластинками, поэтому внешне напоминает панцирь черепахи.

Ротовое отверстие у ребенка, больного ихтиозом, может быть резко растянуто или сужено, подвижность губ ограничена. При ихтиозе плода дети часто рождаются намного раньше срока, такие новорожденные не всегда жизнеспособны.

У детей больных эритродермией ихтиозиформной кожа при рождении покрыта тонкой желтоватой пленкой. После того, как пленка сойдет, кожа больного ребенка приобретает красноватый оттенок, который долго не проходит, наблюдается отшелушивание крупных кожных пластинок.

Ихтиозиформная эритродермия в буллезной форме сопровождается образованием на коже пузырей. Иногда у больных детей отмечается поражение глаз (эктропион, блефарит), кератоз кожи стоп и ладоней, дистрофические изменения волос и ногтей, патологические поражения нервной и эндокринной систем. Данное заболевание, как правило, длится на протяжении всей жизни больного.

Ихтиоз сальный.

Эта форма ихтиоза характеризуется интенсивным выделением кожного засыхающего секрета. Заболевание проявляется с первых дней жизни ребенка. У больного новорожденного можно заметить сильное шелушение кожи, тело ребенка выглядит так, будто оно покрыто коркой. Эта форма ихтиоза проще всего поддается излечению.

Ихтиоз ламеллярный.

Данную форму заболевания называют еще пластинчатым ихтиозом, болезнь является врожденной. Ребенок появляется на свет с кожей, покрытой пленкой. После того, как пленка сойдет, на теле образуются крупные чешуйки в виде пластинок.

При этой форме заболевания поражение кожи остается у больного на всю жизнь. А вот на внутренние органы ламеллярный ихтиоз оказывает минимальное влияние.

Ихтиоз приобретенный.

Заболевания в данной форме отмечается очень редко, оно проявляется после 20 лет и, как правило, возникает на фоне хронически протекающих заболеваний ЖКТ.

Причиной развития приобретенного ихтиоза могут стать такие заболевания, как системная красная волчанка, гипотиреоз, саркоидоз, СПИД, пелларга, различные гиповитаминозы. Приобретенный ихтиоз нередко является предшественником таких заболеваний, как саркома Капоши, грибовидному лейкозу, болезни Ходжкина, опухолей яичников и молочных желез у женщин. Нередко появление симптомов ихтиоза является первым признаком возникновения злокачественных опухолей.

Размещено на Allbest.ru

...

Подобные документы

    Биография Н.И. Вавилова как выдающегося генетика, селекционера, организатора сельскохозяйственной и биологической науки в России. Открытие закона гомологических рядов в наследственной изменчивости. Учение о центрах происхождения культурных растений.

    доклад , добавлен 24.06.2008

    Учение о предковых формах как один из разделов селекции. Цепочка эволюционных изменений. Учения Чарльза Дарвина. Центры происхождения культурных растений в учении академика Н.И. Вавилова. Преимущества генетического разнообразия исходного материала.

    реферат , добавлен 21.01.2016

    Гаметогенез и развитие растений. Основы генетики и селекции. Хромосомная теория наследственности. Моногибридное, дигибридное и анализирующее скрещивание. Сцепленное наследование признаков, генетика пола. Наследование признаков, сцепленных с полом.

    реферат , добавлен 06.07.2010

    Генетика как наука, изучающая явления наследственности и изменчивости в человеческих популяциях, особенности наследования нормальных и патологических признаков, зависимость заболеваний от наследственной предрасположенности и факторов внешней среды.

    презентация , добавлен 21.02.2014

    Советский биолог, основоположник современного учения о биологических основах селекции Вавилов Н.И. Русский естествоиспытатель Тимирязев К.А. Достижения и заслуги ученых-биологов Ковалевского А.О., Павлова И.П., Четверикова С.С. и Тихомирова А.А.

    презентация , добавлен 08.09.2010

    Генетика – наука о законах наследственности и изменчивости организмов и методах управления ими, ее основные разделы. Пути развития отечественной генетики. История деятельности русских учёных в данной области: Филипченко, Четверикова, Лобашёва, Кольцова.

    реферат , добавлен 27.02.2011

    Описание жизненного пути и деятельности Вавилова Николая Ивановича. Его молодость, первый научный опыт, рабочая биография. Занятие селекцией, организация экспедиций. Увлечение генетикой. Репрессии и арест ученого. Его вклад в развитие генетики и селекции.

    презентация , добавлен 17.04.2012

    Закономерности наследственности и мутационной изменчивости как основа теории селекции, ее задачи и методы. Выведение новых пород животных, сортов растений, микроорганизмов с учетом законов эволюции, роль внешней среды в развитии и формировании признаков.

    презентация , добавлен 02.11.2011

    Селекция как наука о методах создания высокопродуктивных сортов растений, пород животных и штаммов микроорганизмов. Центры происхождения культурных растений. Закон гомологических рядов. Индуцированный мутагенез. Полиплоидия и гибридизация в селекции.

    презентация , добавлен 09.12.2011

    Задачи современной селекции, породы животных и сорта растений. Центры многообразия и происхождения культурных растений. Основные методы селекции растений: гибридизация и отбор. Самоопыление перекрестноопылителей (инбридинг), сущность явления гетерозиса.

История развития генетики

Предмет генетики

По признанию многих современных биологов генетика в последние годы стала сердцевиной всей биологической науки. Лишь в рамках генетики разнообразие жизненных форм и процессов может быть осмыслено как единое целое.

Таким образом, генетика – наука о наследственности и ее реализации в развитии, о закономерностях наследования генетически закрепленных признаков. Наследственность можно определить как биологический процесс, обуславливающий сходство между родителями и потомством.. В понятие наследственности по М.Е.Лобашеву входят четыре группы явлений: организация генетического материала, его экспрессия, воспроизведение (репликация) и передача от одного поколения к другому. Таким образом, генетика объединяет в одно целое эмбриологию и биологию развития, морфологию и физиологию, объединяет в единую науку – биологию.

Другой проблемой генетики является проблемы изменчивости общего для любого конкретного вида генотипа.

Очень велико и практическое значение генетики, т.к. она служит теоретической основой селекции полезных микроорганизмов, культурных растений и домашних животных.

Из генетики выросли такие мощно развивающиеся науки как биотехнология, генная инженерия, молекулярная биология. Трудно переоценить роль генетики в развитии медицины. Основными разделами современной генетики являются: цитогенетика, молекулярная генетика, мутагенез, популяционная, эволюционная и экологическая генетика, физиологическая генетика, генетика индивидуального развития, генетика поведения и др. Разделами частной генетики: генетика микроорганизмов, генетика растений, генетика животных, генетика человека.

2. Краткая история развития представлений о наследственности

Фактически вплоть до начала 20 века гипотезы о механизмах наследственности имели умозрительный характер. Первые идеи о механизмах наследственности высказывали древние греки уже к V веку до н.э., в первую очередь Гиппократ . По его мнению, половые задатки (т.е. в нашем понимании яйцеклетки и сперматозоиды), участвующие в оплодотворении, формируются при участии всех частей организма, в результате чего признаки родителей непосредственно передаются потомкам, причем здоровые органы поставляют здоровый репродуктивный материал, а нездоровые – нездоровый. Это теория прямого наследования признаков.

Аристотель (IV в до н.э.) высказывал несколько иную точку зрения: он полагал, что половые задатки, участвующие в оплодотворении, производятся не напрямую из соответствующих органов, а из питательных веществ, необходимых

для этих органов. Это теория непрямого наследования.

Много лет спустя, на рубеже 18-19 веков, автор теории эволюции
Ж.-Б. Ламарк использовал представления Гиппократа для построения своей теории передачи потомству новых признаков, приобретенных в течение жизни.

Теория пангенезиса, выдвинутая Ч. Дарвином в 1868 году также базируется на идее Гиппократа. По мнению Дарвина, от всех клеток
организма отделяются мельчайшие частицы - "геммулы", которые,
циркулируя с током крови по сосудистой системе организма, достигают половых
клеток. Затем, после слияния этих клеток, в ходе развития организма следующего
поколения геммулы превращаются в клетки того типа, из которого произошли,
со всеми особенностями, приобретенными в течение жизни родителей.
Отражением представлений о передаче наследственности через "кровь" является существование во многих языках выражений: "голубая кровь", "аристократическая кровь", "полукровка" и т.д.

В 1871 году английский врач Ф. Гальтон (F. Galton), двоюродный брат
Ч. Дарвина опроверг своего великого родственника.
Он переливал кровь черных кроликов белым, а затем скрещивал белых между собой. В трех поколениях он "не нашел ни малейшего следа какого-либо нарушения чистоты серебристо белой породы". Эти данные показали, что по крайней мере в крови кроликов геммулы отсутствуют.

В 80-е годы 19-го века с теорией пангенезиса не согласился Август Вейсман
(A. Weismann). Он предложил свою гипотезу, согласно которой в организме существуют два типа клеток: соматические и особая наследственная субстанция, названная им "зародышевой плазмой", которая в полном объеме присутствует только в половых клетках.

Современная генетика – наука о наследственности и изменчивости организмов - в настоящее время проходит качественно новый этап своего развития, связанный с изучением молекулярных основ строения и функционирования генов и геномов, проблем генетической инженерии и ее использования в медицине, биологической промышленности, сельском хозяйстве и других направлениях науки и практики.

Историю генетики условно делят на три этапа. Первый этап классической генетики (1880 – 1930гг.), связанный с созданием теории дискретной наследственности (менделизм) и хромосомной теории наследственности (работы Моргана и его школы). Второй этап (1930 – 1953 гг.) – углубление принципов классической генетики и пересмотр ряда ее положений, исследования по мутационной изменчивости, доказательства сложного строения гена и генетической роли молекул дезоксирибонуклеиновой кислоты (ДНК) как материальной основы наследственности в клетке. Третий этап начинается с 1953 г., когда было описано строение ДНК и ее свойства, начаты и продолжаются работы по выделению ДНК и РНК и расшифровка генетического кода. В последние годы активно исследуются молекулярные основы строения и функционирования геномов, устанавливаются полные нуклеотидные последовательности геномов ряда организмов, в том числе человека, ведутся интенсивные исследования в области генетической инженерии. Подходы к современной генетике наметились в 18-ом и, особенно, в 19-ом веке. Растениеводы-практики, такие как
О. Сажрэ и Ш. Нодэн во Франции, А. Гершнер в Германии, Т. Найт в Англии обратили внимание на то, что в потомстве гибридов преобладают признаки одного из родителей. П. Люка во Франции сделал аналогичные наблюдения о наследовании различных признаков у человека.

Фактически всех их можно считать непосредственными предшественниками Менделя. Однако, только Мендель сумел глубоко продумать и провести спланированные эксперименты. Уже в первоначальной стадии работы он понял, что в эксперименте нужно выполнить два условия: растения должны обладать константно различающимися признаками и гибриды должны быть защищены от влияния чужой пыльцы. Таким условиям удовлетворял род Pisum (горох). Константность признаков была предварительно проверена в течение двух лет. Это были следующие признаки: "различия в длине и окраске стебля, в величине и форме листьев, в положении, окраске и величине цветков, в длине цветочных побегов, в окраске, форме и величине стручков, в форме и величине семян, в окраске семенной кожуры и белка". Часть из них оказались недостаточно контрастными и дальнейшую работу он с ними не проводил. Остались только 7 признаков. "Каждый из этих 7 признаков у гибрида или вполне тождественен с одним из двух отличительных признаков основных форм, так что другой ускользает от наблюдения, или же так похож на первый, что нельзя установить точного различия между ними". Признаки, "которые переходят в гибридные соединения совершенно неизменными... обозначены как доминирующие, а те, которые становятся при гибридизации латентными, как рецессивные". По наблюдениям Менделя "совершенно независимо от того, принадлежит ли доминирующий признак семенному или пыльцевому растению, гибридная форма остается в обоих случаях той же самой".

Таким образом, заслугой Менделя является то, что из непрерывной характеристики растений он выделил дискрентные признаки, выявил константность и контрастность их проявления, а также он ввел понятие доминантности и рецессивности. Все эти приемы впоследствии вошли в любой гибридологический анализ любого организма.

В результате скрещивания растений, обладающих двумя парами контрастных признаков, Мендель обнаружил, что каждый из них наследуется независимо от другого. Признаки эти контрастны и не теряются при гибридизации.

Работа Менделя не смогла заинтересовать современников и не повлияла на распространенные в конце 19-го века представления о наследственности.

Вторичное открытие законов Менделя в 1900 году Гуго де Фризом (Н. de Vries) в Голландии, Карлом Корренсом в Германии и Эрихом Чермаком в Австрии утвердили представления о существования дискретных наследственных факторов. Мир уже был готов к тому, чтобы воспринять новую генетику. Началось ее триумфальное шествие. Проверяли справедливость законов о наследовании по Менделю (менделировании) на все новых и новых растениях и животных и получали неизменные подтверждения. Все исключения из правил быстро развивались в новые явления общей теории наследственности.

В 1906 году англичанин Уильям Бэтсон (W. Bateson) предложил термин "генетика" (от латинского "geneticos" – относящийся к происхождению или "geneo" - порождаю, или "genos" – род, рождение, происхождение).

В 1909 году датчанин Вильгельм Иогансен (W. Iohanssen) предложил термины "ген", "генотип" и "фенотип".

Но уже вскоре после 1900 года встал вопрос, что такое ген и где он в клетке расположен? Еще в конце 19-го века Август Вейсман предположил, что постулированная им "зародышевая плазма" должна составлять материал хромосом. В 1903 году немецкий биолог Теодор Бовери (Т. Boveri) и студент Колумбийского Университета Уильям Сэттон (W. Sutton), работавший в лаборатории американского цитолога Е.Б. Вильсона, независимо друг от друга предположили, что общеизвестное поведение хромосом во время созревания половых клеток, а также при оплодотворении, позволяет объяснить характер расщепления наследственных единиц, постулированный теорией Менделя, т.е. по их мнению гены должны быть в хромосомах.

В 1906 году английские генетики У Бэтсон и Р. Пэннет в опытах с душистым горошком обнаружили явление сцепления наследственных признаков, а другой английский генетик Л. Донкастер тоже в 1906 году в опытах с бабочкой крыжовенной пяденицей открыл сцепленное с полом наследование. На первый взгляд и те, и другие данные явно не укладывались в менделевские законы наследования. Однако это противоречие легко устраняется, если представить, что происходит сцепление генов с одной из хромосом.

С 1910 года начинаются эксперименты группы Томаса Ханта Моргана (Т.Н. Morgan). Вместе со своими учениками Альфредом Стертевантом
(A. Sturtevant), Кальвином Бриджесом (С. Bridges) и Германом Меллером
(Н. Muller), ставшими вместе с Морганом основоположниками генетики, он к середине 20-х годов сформулировал хромосомную теорию наследственности, согласно которой гены расположены в хромосомах "как бусы на нити". Ими был определен порядок расположения и даже расстояния между генами. Именно Морган ввел в генетические исследования в качестве объекта маленькую плодовую мушку дрозофилу (
Drosophila melanogaster).

В 1929 году А.С. Серебровский и Н.П. Дубинин , еще не зная, что такое ген, на основании результатов собственных исследований пришли к выводу о его делимости.

Новый этап развития генетики начался в 1930-1940-е годы: Дж. Бидл (J. Beadle) и Э. Тэйтум (Е. Tatum) сделали заключение о том, что всякий ген определяет синтез одного фермента. Они предложили формулу: "Один ген – один фермент", или позднее, после уточнения: "один ген – один белок", или "один ген – один полипептид".

В 1944 году в результате работ по трансформации у бактерий О. Эвери, К. МакЛеод и М. МакКарти (О.Т. Avery, СМ. MacLeod, M. McCarty) показали что трансформирующим агентом у пневмококков является ДНК, а следовательно, именно этот компонент хромосом и является носителем наследственной информации.

Примерно в это же время было показано, что инфекционным элементом вирусов служит их нуклеиновая кислота.

В 1952 году – Дж. Ледерберг и М. Зиндер (J. Lederberg, M. Zinder) открыли явление трансдукции, т.е. переноса вирусами генов хозяина, показав тем самым роль ДНК в осуществлении наследственности.

Новый этап развития генетики начинается с момента расшифровки структуры ДНК Джеймсом Уотсоном и (J.D. Watson, род. 1928, F. Crick, род. 1916), которые обобщили данные рентгеноструктурного анализа, полученные Моррисом Уилкинсом и Розалинд Франклин.

Этот этап развития генетики богат выдающимися открытиями, особенно крупное было связано с расшифровкой генетического кода (С. Очоа и М. Ниренберг в США, Ф. Крик в Англии). А в 1969 году в США Г. Хорана с сотрудниками синтезировали химическим путем первый ген.

Достаточность знаний о механизмах наследственности привела к развитию новой науки – генетической инженерии. С использованием генно-инженерных приемов из многих живых организмов выделяют и изучают гены, переносят гены из одних организмов в другие.

В 1976 году была выделена и клонирована ДНК мобильных элементов генома (Г.П. Георгиев с сотрудникми в СССР, Д. Хогнесс (D. Hogness) с сотрудниками в США). С 1982 года, используя мобильные элементы генома в качестве вектора, содержащего тот или иной ген, начаты опыты по трансформации дрозофилы (Дж. Рубин, А. Спрадлинг, США).

Конец 1980-х - 1990-е годы характерны беспрецедентной активностью генетиков по расшифровке процессов развития, осуществляемого под контролем генов (Е. Lewis, С. Nusslein-Volhard, E. Wieshaus, W. Gehring,
A. Garcia-Bellido, D. Hogness).

Вклад ученых в развитие генетики

В СССР золотой век генетики начался вскоре после Октябрьской революции в 1917 году. В середине тридцатых годов, по мнению многих современных ученых, советская генетика несомненно стояла на втором месте в мире после США.

Наиболее крупной фигурой российской генетики был и надолго останется, Н.И. Вавилов, открывший параллельность наследственной изменчивости у растений (1922), и центры происхождения культурных растений (1927). Заслуги Вавилова еще при жизни были оценены современниками. Его имя было занесено на обложку основного в то время генетического журнала "Hered­ity" вместе с именами других крупнейших генетиков мира.

Н.К. Кольцов, глава московской школы генетиков, предложил в 1935 году гипотезу о матричном принципе репродукции гена и предложил идею, что все гены в хромосоме представляют одну гигантскую молекулу.

А.С.Серебровский и Н.П.Дубинин в 1929 году впервые продемонстрировали сложную организацию гена.

С.С. Четвериков в 1926 г. заложил основы экспериментальной генетики популяций. А.С. Серебровский (1940) предложил уникальный биологический метод борьбы с вредителями сельского хозяйства.

Ю.А. Филипченко за свою короткую жизнь сделал выдающийся вклад в генетику растений и домашних животных, Г.Д. Карпеченко впервые получил межродовые гибриды растений.

Г.А. Левитский был выдающимся цитогенетиком.

Г.А. Надсон и Г.С. Филиппов впервые в 1925 индуцировали мутации с помощью рентгеновских лучей.

Можно привести огромный список фамилий выдающихся ученых мирового уровня: Б.Л. Астауров, И.А. Раппопорт, А.А. Прокофьева-Бельговская, М.Л. Бельговский, П.Ф.Рокицкий, Н.В. Тимофеев-Ресовский, Ф.Г. Добжанский, Б. Эфрусси, М.Е. Лобашев, В.В. Сахаров. Многие выдающиеся зарубежные ученые работали в российских лабораториях того времени: У. Бэтсон, С. Харланд и К.Д. Дарлингтон из Англии, Э. Баур и Р. Гольдшмидт из Германии, К. Бриджес, Л. Дэнн и Г. Меллер из США,
Д. Костов из Болгарии.

Ситуация начала ухудшаться в конце 20-х годов, когда некоторые неоламаркисты стали активно защищать теорию наследования приобретенных в ходе жизни свойств организма. Эти неоламаркисты получили существенную помощь от группы философов-марксистов, таких как М.Б. Митин и П.Ф. Юдин, заявивших, что теория Ламарка соответствует основным постулатам диалектического материализма. Их оппоненты обвинялись в "идеализме", в том смысле, что они отрицают возможность влияния внешней среды на наследственность. Правительство сильно поддерживало ламаркистов, даже пригласило известного автрийского ламаркиста Пауля Камерера занять высокий пост в советской биологической науке. Многие генетики протестовали против данных П. Камерера (Н.К. Кольцов, А.С. Серебровский, Ю.А. Филипченко, М.Л. Левин, С.Г. Левит, С.С. Четвериков).

В свою очередь правительство критиковало этих ученых. В 1929 году, после самоубийства П. Камерера, узнавшего о разоблачении его научной подделки, С.С. Четвериков и его аспирант П.Ф. Рокицкий были арестованы. Четвериков был сослан на Урал, затем смог переехать во Владимир, потом в Горький, но в Москву путь ему был закрыт.

В середине 1930-х годов дискуссии вновь возобновились, но уже с участием быстро набирающего силу Т.Д. Лысенко. Т.Д. Лысенко базировался на следующих постулатах:

1. Он отрицал существование генов, объявляя их выдумкой буржуазных идеалистических ученых. Хромосомы, по его мнению, не имели никакого отношения к наследственности. Он отрицал законы Менделя, считая их "выдумкой католического монаха".

2. Лысенко безусловно принимал идею наследования приобретенных признаков и отрицал роль отбора в эволюции, который считал "ошибкой Дарвина".

3. Лысенко считал, что один вид внезапно, в результате скачка, может превратиться в другой, например, береза в ольху, овес – в пшеницу, кукушка – в пеночку.

Лысенко никогда не проверял свои идеи ни экспериментально, ни сравнивая с литературными данными. Он заявлял, что источником его знаний являются работы И.В. Мичурина и К. А. Тимирязева, а также "классиков марксизма". На основе этих "знаний" он предлагал рецепты быстрого улучшения сельского хозяйства в целом, быстрого выведения ценных сортов растений – в 2-3 года, в то время как методы, базирующиеся на основе законов Вейсмана-Менделя-Моргана, требуют 10-15 лет работы.

Сталин поддержал Лысенко. Началось его быстрое продвижение по карьерной лестнице: в 1934 – академик АН Украины, 1935 академик ВАСХНИЛ, в 1938 - президент этой Академии, 1939 - академик АН СССР. После ареста Вавилова, в 1940 году Лысенко стал директором института генетики АН СССР. С 1937 по 1966 год Лысенко – депутат Верховного Совета СССР и заместитель его председателя. Он лауреат государственной премии и не менее 8 раз кавалер ордена Ленина, в 1945 году стал Героем Социалистического Труда.

Правой рукой Лысенко был морально разложившийся тип –
И.И. Презент, бывший адвокат. Он давал "идеологически выверенные" объяснения биологических теорий Лысенко.

В конце 1936 и 1938 годах состоялись публичные дискуссии, организованные философом М.Б. Митиным – редактором журнала "Под знаменем марксизма". Сторону генетиков поддерживали будущий Нобелевский лауреат Г. Меллер, а также А.Р. Жебрак, Н.И. Вавилов и Н.П. Дубинин. Однако, уже на этом этапе научная сторона дискуссий не интересовала ни лысенковцев, ни поддерживавших их правителей СССР. Вскоре после последней дискуссии (в 1940 году) Вавилов был арестован и погиб в тюрьме гор. Саратова от истощения. Место его могилы неизвестно до сих пор.

В 1939 году злобная статья против Н.К. Кольцова появилась в "Правде". Затем была комиссия, включающая Лысенко, в возглавляемый
Н.К. Кольцовым Институт экспериментальной биологии (ныне Институт биологии развития РАН им. Н.К. Кольцова). На основании заключения комиссии Кольцов был снят с должности директора. Через несколько месяцев он умер от инфаркта миокарда. После ареста Вавилова пошла волна арестов среди других генетиков. В камерах пыток погибли Г.А. Левитский в возрасте 64 лет, Г.Д. Карпеченко в возрасте 43 лет, Г.К. Мейстер, другие генетики: Н.К. Беляев, С.Г. Левит, И. Агол, М. Левин.

Апофеозом могущества Лысенкостала печально знаменитая августовская
сессия ВАСХНИЛ 1948 года. Вся процедура этого заседания
была фарсом, специально подготовленным для расправы над генетикой. Заслуживают восхищения те из немногих генетиков, которые, зная, что это фарс, пошли и сказали свои последние слова в защиту генетики. Вот их имена: И.А. Рапопорт, М.М. Завадовский, СИ. Алиханян, И.А. Поляков, П.М. Жуковский, И.И. Шмальгаузен, А.Р. Жебрак, B.C. Немчинов.

Часть из них не выдержала, и к концу сессии они сломались, отступили от генетики, видимо после того как Лысенко заявил, что тов. Сталин прочитал и полностью одобрил его доклад о разгроме генетики. Все они потеряли работу, кроме И.А. Рапопорта, которого, как героя войны, оставили в покое.

Сразу после августовской сессии ВАСХНИЛ 1948 года были составлены списки, по которым множество ученых-генетиков были уволены из вузов и академических институтов. Из журналов вырывали страницы, где были статьи генетиков, в статьях вымарывали слова "ген", "генетика", "хромосома". Множество ученых были отправлены в ссылки.

Некоторым ученым, например, Дубинину, Лобашеву, Прокофьевой-Бельговской удалось выстоять, не отказываясь от своих убеждений, благодаря смене научной специализации; Дубинин несколько лет работал орнитологом, Лобашев – физиологом, Прокофьева-Бельговская микробиологом. А З.С. Никоро – пианисткой в кинотеатре.

После смерти Сталина началось медленное восстановление генетики. Стали появляться разрозненные публикации с критикой Лысенко. Сначала авторами были химики и физики, затем к ним присоединились биологи (Сукачев, Любищев, Медведев, Кирпичников).

Решающий перелом наступил в 1957 году. М.Е. Лобашев начал читать генетику в Ленинградском университете, в Новосибирске в этом же году
М.А. Лаврентьев решил основать Институт цитологии и генетики в структуре Сибирского отделения АН СССР. В Киевском университете генетику начал читать П.К. Шкварников с 1958 года. И.В. Курчатов организовал в своем суперсекретном Институте атомной энергии радиобиологический отдел (ныне Институт молекулярной генетики РАН). Тем не менее, вплоть до 1965 года нельзя было негативно упоминать сессию ВАСХНИЛ 1948 года, о преподавании генетики в ЛГУ, о строительстве Института в Новосибирске, о подготовке Лобашевым первого послевоенного учебника по генетике. Все это делалось на полулегальном уровне.

Более того, возникла новая "гениальная социалистическая идея": неграмотная пенсионерка О.Б. Лепешинская заявила, что клетки возникают не путем митотического деления по принципу Р. Вирхова «cellula e cellula», а непосредственно из "живого вещества" – например из протухшего яичного желтка. Принцип же Вирхова был объявлен "выдумкой буржуазного идеалиста". Лысенко с его шайкой поддержали Лепешинскую.

Другая "теория", поддержанная Лысенко, была предложена
Г.И. Бошьяном, полагавшим, что вирусы могут трансформироваться в бактерии и обратно.

Интересно сравнить то, что делалось в 1950-ые годы за рубежом и в России: расшифровка структуры ДНК и генетического кода там и средневековая охота на ведьм – тут. Как же получилось, что старушка-пенсионерка завладела "умами" "биологов" и правителей России? Не в последнюю очередь это и потому, что на стене Дома-на-набережной в Москве до сих пор висит мемориальная доска: "В этом доме жили... и О.Б. Лепешинская - соратники В.И. Ленина".

По свидетельству одного из активных последователей Лысенко и Лепешинской, А.Н. Студитского, сделанному несколько лет назад, "Лысенко задержал развитие генетики на 40 лет".

Федеральное агентство по образованию Российской Федерации

Государственное образовательное учреждение высшего профессионального образования

«Южно-Уральский государственный университет»

Факультет «Экономика и управление»

Кафедра «Экономика, управление и инвестиции»

История развития генетики. Вклад русских ученых

РЕФЕРАТ

по дисциплине «Концепции современного естествознания»

Проверил

О.М. Баева

студент группы ЭиУ-232

А.И. Кулешова

________________________2010г.

Реферат защищен

с оценкой

_____________________________

________________________2010г.

Челябинск 2010

Цель реферата – определить роль русских ученых в становлении генетики как науки и в ее дальнейшем развитии.

Задачи реферата – рассмотреть основные открытия, сделанные русскими учеными и сделать выводы об их значимости для науки.

Рассмотрены ключевые достижения русских ученых, определившие дальнейшее развитие генетики. Сделаны выводы о ценности вклада русских ученых в науку.

АННОТАЦИЯ.. 2

ВВЕДЕНИЕ.. 4

1 РАЗВИТИЕ ГЕНЕТИКИ В РОССИИ.. 5

2 НИКОЛАЙ ИВАНОВИЧ ВАВИЛОВ И ЕГО ВКЛАД В ГЕНЕТИКУ.. 6

2.1 Учение об иммунитете растений. 7

2.2 Закон гомологических рядов в наследственной изменчивости. 8

3 НИКОЛАЙ КОНСТАНТИНОВИЧ КОЛЬЦОВ.. 12

4 ИСКУССТВЕННОЕ ПОЛУЧЕНИЕ МУТАЦИЙ.. 13

4.1 Вклад Г.А. Надсона и его учеников. 14

4.2 Вклад Н.В. Тимофеева-Ресовского. 14

4.3 Химический мутагенез. 16

5 ПРОБЛЕМА ДРОБИМОСТИ ГЕНА.. 17

6 МОЛЕКУЛЯРНАЯ ГЕНЕТИКА.. 19

ЗАКЛЮЧЕНИЕ.. 20

БИБЛИОГРАФИЧЕСКИЙ СПИСОК.. 21

ВВЕДЕНИЕ

Генетика — наука о наследственности и её изменчивости – получила развитие в начале XX в., после того как исследователи обратили внимание на законы Г. Менделя, открытые в 1865 г., но остававшиеся без внимания в течение 35 лет. За короткий срок генетика выросла в разветвленную биологическую науку с широким кругом экспериментальных методов и направлений. Название генетика было предложено английским ученым У. Бэтсоном в 1906 г. Исследователями классического периода развития генетики были выяснены основные закономерности наследования и доказано, что наследственные факторы (гены) сосредоточены в хромосомах. Дальнейший прогресс в изучении закономерностей хранения и реализации генетической информации сдерживался по двум причинам. Во-первых, из-за слишком объемных экспериментов, связанных с более глубоким изучением генов, во-вторых, ввиду невозможности понять работу генов без углубленного исследования превращения молекул, вовлеченных в генетические процессы. Переход к генетическим исследованиям микроорганизмов, позволивший избегать многих трудностей, был вполне закономерен. Такой переход осуществился в 50-х годах. В 1941 г. Дж. Бидл и Э.

История генетики

В последние годы эти исследования получили широкий размах и проводятся на самых различных биологических объектах.

Задачей данного реферата является отражение наиболее важных открытий, сделанных русскими учеными в области генетики, их анализ и определение их значимости для науки.

Для раскрытия темы были взяты как научные труды, так и современные интернет-ресурсы, что должно дать проверенные данные и современную точку зрения на них.

1 РАЗВИТИЕ ГЕНЕТИКИ В РОССИИ

Если не считать опытов по гибридизации растений в XVIII в., первые работы по генетике в России были начаты в начале XX в. как на опытных сельскохозяйственных станциях, так и в среде университетских биологов, преимущественно тех, кто занимался экспериментальной ботаникой и зоологией.

После революции и гражданской войны 1917-1922 гг. началось стремительное организационное развитие науки. К концу 1930-х годов в СССР была создана обширная сеть научно-исследовательских институтов и опытных станций (как в Академии наук СССР, так и во Всесоюзной академии сельскохозяйственных наук имени Ленина (ВАСХНИЛ)), а также вузовских кафедр генетики. Признанными лидерами направления были Н. И. Вавилов, Н. К. Кольцов, А. С. Серебровский, С. С. Четвериков и др. В СССР издавали переводы трудов иностранных генетиков, в том числе Т. Х. Моргана, Г. Мёллера, ряд генетиков участвовали в международных программах научного обмена. Американский генетик Г. Мёллер работал в СССР (1934-1937), советские генетики работали за границей. Н. В. Тимофеев-Ресовский - в Германии (с 1925 г.), Ф. Г. Добржанский - в США (с 1927 г.).

В 1930-е гг. в рядах генетиков и селекционеров наметился раскол, связанный с энергичной деятельностью Т. Д. Лысенко и И. И. Презента. По инициативе генетиков был проведён ряд дискуссий (наиболее крупные - в 1936 и 1939 г.), направленных на борьбу с подходом Лысенко.

На рубеже 1930-1940-х гг. в ходе так называемого Большого террора большинство сотрудников аппарата ЦК ВКП (б), курировавших генетику, и ряд видных генетиков были арестованы, многие расстреляны или погибли в тюрьмах (в том числе, Н. И. Вавилов). После войны дебаты возобновились с новой силой. Генетики, опираясь на авторитет международного научного сообщества, снова попытались склонить чашу весов в свою сторону, однако с началом холодной войны ситуация значительно изменилась. В 1948 году на августовской сессии ВАСХНИЛ Т. Д. Лысенко, пользуясь поддержкой И. В. Сталина, объявил генетику лженаукой. Лысенко воспользовался некомпетентностью партийного руководства наукой, «пообещав партии» быстрое создание новых высокопродуктивных сортов зерна («ветвистая пшеница») и др. С этого момента начался период гонений на генетику, который получил название лысенковщины и продолжался вплоть до снятия Н. С. Хрущева с поста генерального секретаря ЦК КПСС в 1964 г.

Лично Т. Д. Лысенко и его сторонники получили контроль над институтами отделения биологии АН СССР, ВАСХНИЛ и вузовскими кафедрами. Были изданы новые учебники для школ и вузов, написанные с позиций «Мичуринской биологии». Генетики вынуждены были оставить научную деятельность или радикально изменить профиль работы. Некоторым удалось продолжить исследования по генетике в рамках программ по изучению радиационной и химической опасности за пределами организаций, подконтрольных Т. Д. Лысенко и его сторонникам.

После открытия и расшифровки структуры ДНК, физической базы генов (1953 г.), с середины 1960-х г. началось восстановление генетики. Министр просвещения РСФСР В. Н. Столетов инициировал широкую дискуссию между лысенковцами и генетиками, в результате было опубликовано много новых работ по генетике. В 1963 г. вышел в свет университетский учебник М. Е. Лобашева «Генетика», выдержавший впоследствии несколько изданий. Вскоре появился и новый школьный учебник Общая биология под редакцией Ю. И. Полянского, используемый, наряду с другими, и по сей день.

Вывод по разделу один

Развитие генетики в России шло сложным путем, претерпевая гонения со стороны властных структур, что значительно тормозило процесс развития данной науки.

2 НИКОЛАЙ ИВАНОВИЧ ВАВИЛОВ И ЕГО ВКЛАД В ГЕНЕТИКУ

Николай Иванович Вавилов (13 (25) ноября 1887, Москва, Российская империя - 26 января 1943, Саратов, РСФСР, СССР) - российский и советский учёный-генетик, ботаник, селекционер, географ, академик АН СССР, АН УССР и ВАСХНИЛ. Президент (1929-1935), вице-президент (1935-1940) ВАСХНИЛ, президент Всесоюзного географического общества (1931-1940), основатель (1920) и бессменный до момента ареста директор Всесоюзного института растениеводства (1930-1940), директор Института генетики АН СССР (1930-1940), член Экспедиционной комиссии АН СССР, член коллегии Наркомзема СССР, член президиума Всесоюзной ассоциации востоковедения. В 1926-1935 годах член Центрального исполнительного комитета СССР, в 1927-1929 - член Всероссийского Центрального Исполнительного Комитета.

Организатор и участник ботанико-агрономических экспедиций, охвативших большинство континентов (кроме Австралии и Антарктиды), в ходе которых выявил древние очаги формообразования культурных растений. Создал учение о мировых центрах происхождения культурных растений. Обосновал учение об иммунитете растений, открыл закон гомологических рядов в наследственной изменчивости организмов. Внёс существенный вклад в разработку учения о биологическом виде. Под руководством Вавилова была создана крупнейшая в мире коллекция семян культурных растений. Он заложил основы системы государственных испытаний сортов полевых культур. Сформулировал принципы деятельности главного научного центра страны по аграрным наукам, создал сеть научных учреждений в этой области.

2.1 Учение об иммунитете растений

Трагедия Вавилова и разгром генетики в СССР

Сегодня, генетика стала приграничной территорией для научных исследований. В этой области осуществлены революционные прорывы, особенно в области медицинских наук. Давайте посмотрим на некоторых известных ученых, внесших неоценимый вклад в области генетических исследований.

Грегор Мендель. Также известен как отец современной генетики, был вторым ребенком Антона и Розине Менделя, и родился 22 июля 1822 года. Он происходил из бедной крестьянской семьи, и, следовательно, должен был зарабатывать деньги, чтобы заплатить за высшее образование. Интерес Менделя в исследованиях был основан на любви к природе и задачах эволюции. Он начал свои эксперименты на горохе, потому что он был доступен во многих вариантах и имел много видов. Проведенные эксперименты им были просты и убедительны, анализ которых дал ему два наиболее важных законов наследования. Первый закон говорит о том, что черты передаются от родителей к потомству. Второй, что черты потомства не всегда аналогичны родительских растений. Биологи долгое время пренебрегали работой ученого заявив, что "статистик" не может дать объяснения законов наследственности. Его работа оставалась непризнанной до 1901 года. В это время трое ученых Уго де Фриза, Карл Корренс, и Эрих фон Чермак независимо друг от друга обнаружили тоже, что и Мендель. Со временем, его законы были тщательно изучены, и теперь они рассматриваются как фундаментальные законы наследования. Тем не менее, его работа увидела свет очень поздно, и он был не в состоянии видеть ее результаты. Он был похоронен 6 января 1884 года в возрасте 62 лет.

Барбара МакКлинток. Барбара — американский ученый и один из самых выдающихся цитогенетиков мира. Как пишут на сайте "Узнай Все", она родилась в семье врачей июня 1902 года, в Хартфорде, штат Коннектикут, закончила университет Корнелла, получила степень бакалавра и магистра, позже доктора философских наук.

В 1927 году она была назначена в качестве инструктора ботаники. В 1930 году Барбара стала первым человеком, который описал крестообразные взаимодействия гомологичных хромосом во время мейоза. В 1931 году вместе с аспирантом Гарриет Крейтон, она доказала связь между гомологичных хромосом во время мейоза и рекомбинации генетических признаков. Она опубликовала первую генетическую карту для кукурузы в 1931 году, показав порядка трех генов на хромосоме. В 1936 году она приняла позицию доцента по кафедре ботаники, в Университете Миссури. В 1938 году Барбара провела цитогенетический анализ центромеры, описывая ее организационную структуру и функцию. За ее новаторскую работу в области генетики кукурузы, а также визуализации хромосом она получила место среди ведущих ученых в области генетики. В 1944 году она стала третьей женщиной, избранной в качестве члена престижной Национальной академии наук.

Она умерла в Хантингтон, Нью-Йорке 2 сентября 1992 года в возрасте 90 лет. По сей день, ее работа имеет значение, несмотря на то, что многое из этого было завершено более полувека назад, до появления молекулярной эпохи.

генетика наследственность ученый лобашев филипченко

Филипченко Юрий Александрович

У истоков отечественной генетики стояли выдающиеся ученые, которые пришли в новую науку из традиционных биологических дисциплин - зоологии, ботаники, гидробиологии, эмбриологии. Одним из таких пионеров в генетике был Юрий Александрович Филипченко - ученый, искренне служивший идеалам науки и трудившийся на благо своей страны. Судьба его полна драматических событий, связанных с общественно-политической жизнью России первой половины XX в.

Родился Юрий Александрович 13 февраля (1 февраля по старому стилю) 1882 г. в селе Злынь Болховского уезда Орловской губернии в семье агронома. Уже в возрасте восьми лет он увлекся изучением природы: собирал коллекции насекомых, вел дневник энтомологических наблюдений, читал специальную литературу. Среднее образование получил во 2-й Санкт-Петербургской классической гимназии, которую окончил в 1900 г. с серебряной медалью. В том же году Юрий Александрович поступил слушателем в Военно-медицинскую академию, но в следующем году перешел на естественное отделение физико-математического факультета Санкт-Петербургского Императорского университета. Молодой естествоиспытатель нашел в стенах университета возможность заниматься любимым делом - изучением природы и ее закономерностей. В течение учебного года он упорно занимался, порой допоздна засиживаясь в библиотеках. Летние месяцы молодой исследователь проводил в поездках, собирая материал для своих первых научных работ по анатомии и эмбриологии насекомых.

В студенческие годы Юрий Александрович (как и его младший брат Александр Александрович) принимал активное участие в различных антиправительственных акциях. За выступление на рабочей сходке в начале декабря 1905 г. он попал под арест, но вскоре был освобожден. В том же декабре его повторно арестовали и продержали в заключении уже четыре месяца. После освобождения весной 1906 г. Юрий Александрович сдал государственные экзамены и окончил университет с дипломом первой степени.

Для подготовки к научно-преподавательской деятельности Филипченко был оставлен в университете, в лаборатории зоологии беспозвоночных, которой руководил В.Т. Шевяков. Одновременно Юрий Александрович работал ассистентом по энтомологии у М.Н. Римского-Корсакова на Стебутовских агрономических курсах, а также преподавал в старших педагогических классах женских гимназий новый курс общей биологии, который послужил в дальнейшем основой его популярного руководства «Общедоступная биология», выдержавшего до 1929 г. 13 изданий (одно - на украинском языке).

В 1911 г. для подготовки к магистерской степени Филипченко был командирован в Германию, к Рихарду Гертвигу, который занимался проблемой определения пола. Весной 1912 г. молодой исследователь посетил Неаполитанскую биологическую станцию для сбора материала по эмбриологии ракообразных.

По возвращении из-за границы Юрий Александрович защитил диссертацию на степень магистра зоологии и сравнительной анатомии на тему: «Развитие изотомы (Isotoma cinerea) из низших насекомых (Collembola)». Помимо рассмотрения вопросов развития низших насекомых и филогенетических отношений между насекомыми и многоножками, Филипченко всесторонне проанализировал в своей диссертации понятие «зародышевые листки», отмечая их специфичность для каждой большой систематической группы насекомых.

Увлечение эмбриологией сыграло значительную роль в становлении Юрия Александровича как ученого-экспериментатора. Гипотетические воззрения он всегда старался проверить и доказать фактами. Когда менделизм стал активно проникать в различные биологические дисциплины, ряд ученых, в том числе и некоторые эмбриологи, очень критично восприняли новое направление. Они считали, что гены определяют несущественные признаки, отличающие особи различных рас и разновидностей; признаки, возникшие на последних этапах эволюции видов и проявляющиеся на самых поздних этапах онтогенеза. Признаки же высших систематических групп - родов, семейств, классов - возникли в эволюции очень давно и определяются другими наследственными факторами - плазмонами (термин Ю.А. Филипченко).

Взгляды Филипченко в 1910-х гг. разделяли и ряд других эмбриологов. Известно, что Т.Моргана, также эмбриолога по образованию (наряду с У.Бэтсоном, У.Каслом, Е.Конклиным, Л.Кено), привело в генетику такое же скептическое отношение к некоторым ее вопросам и, в частности, к учению о целостности единичных факторов и гипотезе о чистоте гамет.

Таким образом, эмбриологические и сравнительно-анатомические работы Юрия Александровича стали трамплином для переключения его интересов на другую научную дисциплину - генетику, на многие годы определившую его и научное, и педагогическое кредо.

В 1913 г. Филипченко прочитал первый в России цикл лекций по генетике - «Учение о наследственности и эволюции». Позднее, в 1924/25 учебном году этот цикл был разделен на два самостоятельных курса: «Генетика» и «Изменчивость» (последний сопровождался практическими занятиями по основам изменчивости и вариационной статистики), которые стали обязательными для всех студентов биологического отделения.

В 1917 г. Юрий Александрович защитил диссертацию на степень доктора зоологии и сравнительной анатомии на тему: «Изменчивость и наследственность черепа у млекопитающих», а в 1918 г. был избран на должность профессора и заведующего лабораторией генетики и экспериментальной зоологии Петроградского университета. В 1919 г. лабораторию реорганизовали в кафедру с таким же названием - первую в России. На этой кафедре, под руководством Филипченко, стали работать ассистенты Виталий Михайлович Исаев, Ксения Александровна Андрианова-Фермор и препаратор Иван Фомич Бордзио. В 1922 г. на кафедру пришли первые два студента (Н.Н. Медведев и Н.Я. Федорова), в 1923-1924 гг. было зачислено уже около двадцати студентов - будущих специалистов-генетиков. С 1923 г. для них был введен курс «Цитологические основы наследственности», который стал читать И.И. Соколов. Он взял также научное руководство над аспирантами Г.М. Пхакадзе, В.Н. Макаловской и А.А. Прокофьевой. Курс селекции растений начал читать проф. В.Е. Писарев, а основы разведения животных - проф. В.П. Никитин.

Под руководством Филипченко в 1920 г. была организована и Лаборатория генетики и экспериментальной зоологии в Петергофском естественно-научном институте (ПЕНИ) при Петроградском университете. Фактически это была первая лаборатория, где проводилась исследовательская работа по генетике. Юрий Александрович сосредоточил свои научные интересы на проблеме наследственности и изменчивости количественных признаков. Для исследования он выбрал различные формы мягких пшениц, обладающих рядом ценных хозяйственных особенностей, легко учитываемых количественными методами. В процессе работы с пшеницами был выявлен ряд генов, определяющих характер изменения и наследования таких признаков, как длина и форма колоса, размер и число зерен в колосе, и многие другие, определяющие селекционные свойства растений. Одним из достижений данной работы стало целеноправленное выведение высокоурожайной формы мягкой пшеницы, названной Юрием Александровичем «Петергофкой». Опыты по скрещиванию мягких пшениц он проводил с двумя сотрудниками - Б.И. Васильевым и Н.Я. Федоровой. Итогом длительного исследования стала монография «Генетика мягких пшениц», изданная после смерти Филипченко, в 1934 г.

Аналогичные исследования генетики количественных признаков в группе твердых пшениц проводил в ПЕНИ Т.К. Лепин, у других видов злаков - Б.И. Васильев, у уток и других птиц - Б.Ф. Румянцев, у дрозофилы - Р.А. Мазинг.

С начала 1920-х гг. на кафедре генетики университета и в лаборатории ПЕНИ начали проводиться экспериментальные работы на гидре и плоских червях. В.М. Исаев проводил опыты по пересадке и сращиванию гидр. Ему впервые удалось получить вегетативные гибриды (химеры) в результате сращивания гидр различных видов и проследить сохранение признаков обоих видов в ряду поколений при размножении бесполым путем. Аспирант Иван Иванович Канаев изучал процесс трансформации клеток регенерирующих гидр, а Янис Янович Лус исследовал особенности регенерации у представителей плоских червей.

В лабораторию Филипченко в Старом Петергофе приезжали ученые из различных научных учреждений. Вокруг Юрия Александровича всегда кипела научная работа, обсуждались актуальные проблемы биологии, активно функционировала научная школа по изучению закономерностей генетики. Не случайно он считается основоположником ленинградской генетической школы, которая дала толчок для формирования новых школ (Г.Д. Карпеченко, М.Е. Лобашева).

С начала ХХ столетия в научной среде были популярны и неоднократно обсуждались евгенические проблемы, но только в 1920 г. евгеника оформилась в России в самостоятельное научное направление. Появились первые евгенические учреждения: евгенический отдел Института экспериментальной биологии (ИЭБ) и Русское евгеническое общество. Их организатором был директор ИЭБ Н.К. Кольцов. В сентябре 1920 г. он обратился к Филипченко с предложением сотрудничества в области генетики человека. Тогда же было принято решение о самостоятельных действиях обоих ученых в Москве и Ленинграде, и в феврале 1921 г. Юрий Александрович организовал Бюро по евгенике при Комиссии по изучению естественных производительных сил России (КЕПС), которая была создана еще до революции для изучения природных богатств России и ставила перед собой большей частью прикладные задачи. Уже то, что евгенические исследования организационно были подчинены именно КЕПС, недвусмысленно указывало на практический характер предполагавшейся работы.

Бюро первоначально располагалось в квартире Филипченко и было немногочисленным, всего три человека, - для изучения наследования морфологических и умственных особенностей человека Юрий Александрович пригласил выпускников кафедры генетики Т.К. Лепина и Я.Я. Луса. Бюро стало издавать свой журнал «Известия Бюро по евгенике» (с 4-го номера - «Известия Бюро по генетике и евгенике», а с 6-го номера - «Известия Бюро по генетике»). Всего в 1922-1930 гг. вышло восемь номеров этого издания, но статьи о евгенических исследованиях содержались только в первых трех из них. В дальнейшем основное направление исследований было существенным образом скорректировано. В апреле 1930 г. Бюро по генетике было преобразовано в Лабораторию генетики АН СССР, а затем в академический Институт генетики. В феврале 1924 г. Филипченко возглавил Ленинградское отделение Русского Евгенического общества и стал одним из редакторов «Русского евгенического журнала».

По своим взглядам Юрий Александрович был «классическим» ученым-генетиком. В разгоревшейся в те годы научной дискуссии с неоламаркистами он горячо отстаивал приоритет наследственности по отношению к среде и отрицал возможность наследования приобретенных признаков. В области евгеники им были сформулированы следующие три задачи, ставшие программой деятельности его Бюро: 1) тщательное изучение вопросов наследственности путем проведения анкетных опросов, обследований, экспедиций в определенные регионы и т.д.; 2) распространение сведений о евгенике - популяризаторская работа; 3) консультирование по вопросам евгеники желающих вступить в брак и вообще всех интересующихся собственной наследственностью. Таким образом, это был строго научный и очень сдержанный, максимально корректный, подход к сложным и неоднозначно интерпретируемым евгеническим проблемам. Спокойная, уравновешенная, вдумчивая натура Филипченко противилась крайностям, он решительно выступал против негативной евгеники, а свой долг ученого видел, прежде всего, в кропотливой, серьезной исследовательской работе и широкой пропаганде евгенических идей. В плане популяризации евгеники Филипченко была проведена огромная работа: ему принадлежит целый ряд замечательных книг и брошюр, в которых ярко и доступно для широкого читателя излагаются основы евгенической науки - «Фрэнсис Гальтон и Грегор Мендель», «Что такое евгеника», «Как наследуются различные особенности человека», статья «Евгеника в школе» и в особенности книга «Пути улучшения человеческого рода: Евгеника». Бюро активно вело и консультативную деятельность среди населения, хотя обращений подобного характера было немного.

Важной работой Бюро по евгенике стало изучение наследования одаренности, или, говоря современным языком, социодемографическое обследование научного сообщества Петрограда начала 1920-х гг. по результатам ответов референтных групп ученых на вопросы специальной анкеты.

При составлении вопросника анкеты сотрудниками Бюро была проделана большая работа. На главном листе анкеты содержались основные вопросы, которые можно назвать социально-демографическими: пол, год рождения, место рождения, социальное происхождение, национальность, профессия. На так называемом малом листе предлагалось ответить, какие и у кого именно из перечисленных на большом листе лиц наблюдались врожденные аномалии анатомического и функционального характера, а также наследственные болезни - случаи глухонемоты, эпилепсии и других душевных заболеваний, сюда же были включены туберкулез и алкоголизм. Было оставлено место для сведений о других родственниках в случае наследования интересных генетических особенностей. Здесь же фиксировался адрес анкетируемого. На листке с объяснительными примечаниями говорилось об общем значении анкеты и давались соответствующие объяснения по ее отдельным пунктам.

Уже в ноябре 1920 г. эта анкета стала распространяться в Петрограде через Дом ученых при поддержке Комиссии по улучшению быта ученых. По результатам исследований был сделан доклад в Доме ученых и опубликовано предварительное сообщение в журнале «Наука и ее работники» (1921, № 6). В это же время сотрудники Бюро начали распространять анкеты среди представителей искусства (через Дом Искусств) и среди студенчества, т.к. Филипченко хотел провести сравнительный анализ данных ученых и деятелей искусства. Это, безусловно, представляло большой интерес, поскольку Юрий Александрович ставил целью обобщающий анализ наследования умственных способностей и одаренности у интеллигенции.

В первом номере «Известий Бюро по евгенике», вышедшем в свет в 1922 г. (и ставшим в наше время библиографической редкостью), была опубликована статья Ю.А. Филипченко «Статистические результаты анкеты по наследственности среди ученых Петербурга». Заметим, что Юрий Александрович нигде не пишет «Петроград», явно предпочитая старое название родного города. В этой работе, а также в работе «Наши выдающиеся ученые» были сформулированы основные выводы проведенного исследования. Впоследствии Филипченко опубликовал в «Известиях Бюро...» и обобщающую статью «Интеллигенция и таланты», ставшую в наше время наиболее известной среди его евгенических работ.

Опрос 1921 г. дал возможность проанализировать 330 анкет, содержащих подробные сведения о 510 семьях ученых и о 166 семьях их детей, в сумме это составило 676 анкет, что делало анализ статистически достоверным. Уже ответы на первые два вопроса анкеты дали интересные сведения. Прежде всего, был выявлен достаточно высокий процент женщин-ученых - чуть меньше 1/3 всех опрошенных. По возрастному составу среди тогдашних ученых Петрограда преобладали люди в возрасте от 37 до 62 лет, т.е. родившиеся между 1860 и 1885 г. Таким образом, средний возраст членов научного сообщества составлял в то время 45-50 лет.

По месту рождения первенство принадлежало Петербургу, за ним следовали центральный район с Поволжьем, западные области и юг России. По месту происхождения (место рождения отца и деда) ведущее положение занимали центр и Поволжье, затем западные области и только потом Петербург. По словам Филипченко, подобное распределение не было случайным, поскольку распространялось и на супругов ученых.

Большой интерес представлял вопрос о национальном происхождении ученых. Филипченко предложил следующие определения по национальному происхождению: чистые русские, смешанное происхождение, чистые иностранцы. Анализируя анкеты, Юрий Александрович установил, что около половины ученых, а также их супругов, имеют чисто русское происхождение, около четверти - смешанное, а еще одна четверть представляет по происхождению чисто иностранный элемент. Среди иностранцев первое место занимали немцы (точнее, имеющие немецко-прибалтийские корни), затем шли поляки, финны и евреи.

Вопрос о происхождении ученых дополнялся указанием на их социальное происхождение. Все профессии Филипченко разделил на две группы - с большей и с меньшей квалификацией в смысле образования и таланта. Из составленных на их основе таблиц вытекал однозначный вывод - большинство ученых, примерно 2/3 (также как и их супруги), происходят из интеллигентной среды. Их отцы были, как правило, педагогами, медиками, учеными, юристами, служащими, военными, священниками. Многие происходили из среды купцов и фабрикантов.

Что касается распространения ряда болезней среди опрошенных и связи этих болезней с национальным происхождением, то здесь, по мнению Филипченко, получилась поучительная картина. Бичом чисто русских семей стал алкоголизм, встречающийся почти в 1,5 раза чаще, чем ожидалось: в 70% вместо 51%. Распространение у них остальных болезней было близко к норме, хотя, туберкулез встречался несколько чаще ожидаемого, а душевные болезни несколько реже, но не настолько, чтобы это напрямую можно было связать с национальными особенностями. Напротив, у иностранцев алкоголизм отмечался раза в три реже ожидаемого и встречаемость всех других заболеваний, особенно туберкулеза, была несколько ниже нормы.

Целый ряд отмеченных среди респондентов особенностей характеризовал не только петроградских ученых, но и всю интеллигенцию тех времен - такое обобщение было сделано Филипченко позднее в статье «Интеллигенция и таланты», подводившей итоги сравнения данных опросов среди ученых и деятелей искусств - литераторов, художников, артистов.

Логическим продолжением исследования научного сообщества стало анкетирование выдающихся ученых. К этой группе Филипченко отнес крупнейших представителей науки, создателей важнейших российских научных школ и направлений, ученых с мировым именем. Но при этом исключил из рассмотрения медиков и инженеров - как представителей не столько теоретического, сколько прикладного знания.

Составленный Юрием Александровичем список «выдающихся» содержал 80 имен. Среди них были распространены анкетные листы с рядом вопросов о них самих, об их предках, супругах, детях, причем многие из этих вопросов не ставились в предыдущей анкете для ученых вообще. Из общих вопросов наиболее интересным оказался вопрос о национальном происхождении. Процент чисто русских был таким же, как и среди ученых вообще, напротив, лиц смешанного происхождения заметно больше, а чисто иностранного - заметно меньше, чем в научном сообществе в целом.

Что касается сословного происхождения, то, сравнив полученные данные с известной статистикой О. Декандоля для иностранных членов Парижской Академии наук, Филипченко заключил, что петербургские выдающиеся ученые происходят из гораздо более демократической среды, практически из всех сословий - дворян, лиц духовного звания, купцов, мещан и крестьян, хотя из первых двух все-таки вышло наибольшее число выдающихся ученых.

Вопрос анкеты о том, каким по счету ребенком был выдающийся ученый, не случаен в данном исследовании. Существовало авторитетное мнение К.Пирсона о более низком уровне развития первенцев в семьях. Исследование Филипченко позволило ему сделать однозначно противоположный вывод: у первенцев гораздо больше шансов стать выдающимися учеными, т.к. почти половина опрошенных выдающихся ученых являлась первенцами.

Интересным кажется распределение среди выдающихся ученых «специальных» способностей, не связанных с научно-исследовательской деятельностью. На первом месте оказались организаторские способности, а затем лингвистические, литературные, музыкальные, ораторские и способности к рисованию. Таким образом, в основном выдающиеся ученые были хорошими организаторами и обладали литературными и художественными дарованиями.

Говоря о различиях, которые выявило обследование ученых вообще и их выдающихся представителей, Юрий Александрович отметил пять главных особенностей. Во-первых, среди выдающихся ученых отсутствовали женщины. Во-вторых, средний возраст выдающихся ученых заметно превышал средний возраст ученых вообще (60 лет вместо 50). В-третьих, среди выдающихся ученых было значительно больше чисто русских, по сравнению с общей выборкой. В-четвертых, у них наблюдалось гораздо большее количество как выдающихся, так и душевнобольных родственников, причем в обоих случаях род матери был более значим, чем род отца. По результатам своих аналитических исследований Филипченко пришел к выводу, что лица, которых можно признать выдающимися учеными, делаются такими не под влиянием своих собственных усилий или каких-нибудь случайных обстоятельств, а под влиянием той силы, которая больше всего делает каждого из нас тем, что он есть, т.е. под влиянием наследственности. Выдающиеся ученые рождаются, а не творятся.

Юрий Александрович заметил, что особенно стоит помнить эту истину в России. За 10 месяцев, которые прошли с момента составления им списка выдающихся ученых, семь были «унесены смертью», а трое покинули Россию. За четыре послереволюционных года Россия потеряла большую часть научного сообщества. Филипченко справедливо замечает, что главной задачей государства должно стать сохранение интеллектуальной элиты нации.

Полученная Ю.А. Филипченко и его сотрудниками объективная характеристика обобщенного типа ученого тех лет представляется очень важной. Прошло только пять лет после революции 1917 г., и научное сообщество бывшей столицы Российской империи еще сохраняло старые традиции - происхождение, образование, национальный состав и многое другое, хотя потери уже были очень ощутимы. Социокультурные катаклизмы, коренным образом изменившие структуру этого сообщества в конце 1930-х гг. были еще впереди. Сама же евгеника перестала существовать в СССР в начале 1930-х гг. Дальнейший анализ структуры нашего научного сообщества, а соответственно и сопоставление его результатов с данными, полученными в первые годы советской власти, стал практически невозможен. Интересно, что сам Филипченко в учебнике генетики, опубликованном в 1929 г., нигде не упоминает даже сам термин «евгеника».

К 1925 г. и он, и его ученики отошли от изучения генетики человека. Юрий Александрович совместно с Т.К. Лепиным занялся изучением наследования количественных признаков пшениц, а его ученики переориентировались на генетическую работу с сельскохозяйственными животными в удаленных и малоисследованных районах СССР. Так, Ф.Г. Добржанский и Я.Я. Лус с 1926 г. начали изучать популяции среднеазиатских домашних животных.

На протяжении всей своей научной деятельности Филипченко интересовался и вопросами эволюции. В 1927 г. он впервые ввел термины «микроэволюция» и «макроэволюция», тем самым подчеркивая различие этих явлений. Такое отношение к дивергенции на подвидовом и надвидовом уровнях как к процессам с разными механизмами отличалось от эволюционных взглядов большинства биологов. Теория спонтанной эволюции, которая была популярна среди ряда естествоиспытателей (И.И. Мечников, Ю.А. Филипченко, С.И. Коржинский), находилась в оппозиции некоторым ортодоксальным постулатам дарвинизма. Сам Юрий Александрович, стоя на позициях автогенеза, критиковал дарвиновскую концепцию видообразования. Он был против положения о том, что происхождение всех таксономических групп подчиняется единым законам и естественный отбор объясняет весь ход биологической эволюции. По его мнению, мутации, их комбинации и отбор могут объяснить лишь процессы видообразования, в то время как формирование таксонов более высокого ранга идет иным путем. Причем происхождение признаков, характерных для родов, семейств, отрядов, классов и типов не подчиняется единым законам, а имеет строго специфический характер. Характерно, что дальнейшее развитие биологии и внедрение новых методов исследований позволили сторонникам данных взглядов заложить в основу своих фундаментальных концепций новые достижения генетики, молекулярной биологии, палеонтологии, эмбриологии и других дисциплин.

В феврале 1930 г. Юрий Александрович принял решение уйти из университета и сосредоточиться на работе в структуре Академии наук СССР. К этому времени он вступил в должность заведующего отделом животноводства Всесоюзной Академии сельскохозяйственных наук им. В.И. Ленина. Однако поработать на новом месте ему не пришлось - Юрий Александрович заболел менингитом и скончался в ночь с 19 на 20 мая 1930 г.

За месяц до его смерти появилось решение Академии наук о переименовании с лета 1930 г. Бюро по генетике в Лабораторию генетики АН СССР, которую согласился возглавить Н.И. Вавилов, к тому времени уже руководил Всесоюзным институтом растениеводства (до 1930 г. - Отдел прикладной ботаники и селекции).

Хоронили Юрия Александровича все биологи Ленинграда. Впереди гроба студенты несли венок из колосьев пшеницы, произрастающих в разных районах Земного шара. «Благодарные потомки будут помнить в его лице то редкое сочетание мужества, таланта и личного примера беззаветного служения науке и Родине, которое оставило глубокий след в развитии отечественной биологии» - эти слова Н.И. Вавилова на траурном митинге сохранились в сердцах тех, кто провожал выдающегося ученого в последний путь.


Каждое из открытий имеет важнейшее значение для науки и человечества.

Ген интеллекта

Американские ученые из Калифорнии обнаружили белок с названием «клото» и ген KL-VS, который отвечает за его выработку. Последний тут же получил имя «ген интеллекта», ведь данный белок способен повысить показатели IQ человека сразу на 6 пунктов. Более того, этот белок можно синтезировать искусственно, и не важно, какого возраста человек. Следовательно, в будущем ученые научатся научными методами делать людей умнее вне зависимости от их природных интеллектуальных данных. Конечно, при помощи «клото» невозможно сделать из обычного человека гения. Но помочь людям с задержками интеллектуального развития, а также тем, кто страдает от болезни Альцгеймера, в будущем, возможно, и получится.

Болезнь Альцгеймера

Кстати, о болезни Альцгеймера. С момента ее описания в 1906 году ученые не могли достоверно выяснить природу данного заболевания, по каким причинам оно развивается у одних людей, а у других – нет. Но недавно появился существенный прорыв в изучении этой проблемы. Японские исследователи из Университета Осака обнаружили ген, который развивает болезнь Альцгеймера у подопытных мышей. В рамках исследований был выявлен ген klc1, способствующий накоплению в тканях мозга бета-амилоидного белка, который и является основным фактором развития болезни Альцгеймера. Механизм этого процесса был известен давно, но раньше никто не мог объяснить его причину. Опыты показали, что при блокировке гена klc1, количество скапливающегося в головном мозге бета-амилоидного белка снижается на 45%. Ученые надеются, что в будущем их исследования помогут в борьбе с болезнью Альцгеймера – опасным заболеванием, которым страдают десятки миллионов пожилых людей по всему миру.

Ген глупости

Оказывается, существует не только ген интеллекта, но и ген глупости. Во всяком случае, так считают ученые из Университета Эмори в Техасе. Они обнаружили генетическое отклонение RGS14, отключение которого позволяет заметно улучшить интеллектуальные способности подопытных мышей. Выяснилось, что блокировка гена RGS14 делает более активной область CA2 в гиппокампе – области мозга, отвечающей за накопление новых знаний и сохранение воспоминаний. Лабораторные мыши без этой генетической мутации стали лучше запоминать объекты и перемещаться по лабиринту, а также лучше адаптироваться к изменяющимся условиям внешней среды. Ученые из Техаса надеются в будущем разработать препарат, который блокировал бы ген RGS14 у уже живущего человека. Это позволило бы дать людям невиданные ранее интеллектуальные возможности и познавательные способности. Но до реализации данной идеи нужно еще не одно десятилетие.

Ген ожирения

Оказывается, у ожирения также есть генетические причины. В разные годы ученые находили разные гены, способствующие появлению лишнего веса и большого количества жира в организме. Но «главным» из них на данный момент считается IRX3. Выяснилось, что этот ген влияет на процент жира относительно общей массы. Во время лабораторных исследований, оказалось, что у мышей с поврежденным IRX3 процент жира в организме в два раза меньше, чем у остальных. И это притом, что их кормили одинаковым количеством высококалорийной пищи.

Дальнейшее изучение генетической мутации IRX3, а также механизмов ее воздействия на организм позволит создавать эффективные лекарства от ожирения и диабета.

Ген счастья

И главное, на наш взгляд, открытие генетиков из всех упомянутых в этом обзоре. Обнаруженный учеными из Лондонской школы здоровья, 5-HTTLPR называют «геном счастья». Ведь, оказывается, он отвечает за распространение гормона серотонин в нервных клетках. Считается, что серотонин является одним из важнейших факторов, отвечающих за настроение человека, он заставляет нас радоваться или грустить, в зависимости от внешних условий. Те, у кого низкий уровень этого гормона, подвержены частым приступам плохого настроения и депрессий, склонны к тревожности и пессимизму. Британские ученые выяснили, что так называемая «длинная» вариация гена 5-HTTLPR способствует лучшей доставке серотонина в головной мозг, что заставляет человека чувствовать себя в два раза счастливее, чем остальные. Эти выводы основаны на опросе и изучении генетических особенностей нескольких тысяч добровольцев. При этом самые лучшие показатели довольства жизнью оказались у тех людей, оба родителя которых также обладают «геном счастья».

Телеграф - последние новости Украины и мира