Одна из проблем термоядерного синтеза взаимодействие стенок. Решена одна из проблем термоядерного синтеза

1

Несмотря на полные абсолютной уверенности заявления достаточно авторитетных зарубежных специалистов о скором использовании энергии, которую, наконец, можно будет получать от термоядерных реакторов, - всё не так оптимистично. Термоядерная энергетика, казалось бы, такая понятная и доступная, на самом деле по-прежнему далека от широкого и повсеместного внедрения на практике. Недавно в Интернете снова появились радужные сообщения, уверяющие широкую общественность в том, что «не осталось практически никаких технических препятствий для создания в скором времени термоядерного реактора». Но ведь такая уверенность была и раньше. Казалось, что это очень перспективная и решаемая проблема. Но прошли десятки лет, а воз, что называется, и ныне там. Высокоэффективный экологически чистый источник энергии до сих пор остаётся неподвластным человечеству. Как и прежде это - перспективный предмет исследований и разработок, которые должны будут когда-то завершиться удачным проектом - и тогда энергия пойдёт к нам как из рога изобилия. Но дело в том, что столь долгое продвижение вперёд, больше похожее на топтание на месте, заставляет очень серьёзно задуматься и оценить создавшуюся ситуацию. Что если мы недооцениваем какие-то важные факторы, не учитываем значение и роль каких-либо параметров. Ведь даже в Солнечной системе есть так и не вступивший в эксплуатацию термоядерный реактор. Это планета Юпитер. Недостаток массы и гравитационного сжатия не позволили этому представителю планет-гигантов выйти на необходимую мощность и стать ещё одним Солнцем в Солнечной системе. Получается, что также как для обычного ядерного топлива существует критическая масса, необходимая для протекания цепной реакции, так и в данном случае существуют ограничивающие параметры. И если для того, чтобы как-то обойти ограничения по минимально необходимой массе при использовании традиционного ядерного заряда, используется сжатие материала в процессе взрыва, то и в случае создания термоядерных установок тоже нужны определённые нестандартные решения.

Проблема состоит в том, что плазму нужно не только получить, но и удержать. Нужна стабильность в работе создаваемого термоядерного реактора. Но с этим как раз большие проблемы.

Конечно, никто не будет спорить о преимуществах термоядерного синтеза. Это практически неограниченный ресурс для получения энергии. Но директор российского агентства ITER (речь идёт о международном экспериментальном термоядерном реакторе) справедливо отметил, что уже более 10 лет назад США и Англия получили энергию на термоядерных установках, но выход её был далёк от вложенной мощности. Максимум составлял даже менее 70 %. А ведь современный проект (ITER) предполагает получение в 10 раз большей мощности, по сравнению с вложенной. Поэтому очень настораживают заявления, о том, что проект технически сложный и в него будут вноситься коррективы, как, разумеется, и в даты запуска реактора, а, следовательно, возврата инвестиций государствам, вложившим средства в данную разработку.

Таким образом, возникает вопрос, насколько оправдана попытка заменить мощную гравитацию, удерживающую плазму в природных термоядерных реакторах (звёздах) магнитными полями - результатом творения инженерной мысли человека? Преимущество термоядерного синтеза - выделение энергии в миллионы раз превышающее тепловыделение, происходящее, например, при сжигании обычного топлива - именно оно, в то же самое время, является препятствием к успешному обузданию вырывающейся на свободу энергии. То, что легко решается достаточным уровнем гравитации, становится невероятно сложной задачей для инженеров и учёных. Поэтому так трудно разделить оптимизм относительно близких перспектив для термоядерной энергетики. Гораздо больше шансов пользоваться естественным термоядерным реактором - Солнцем. Этой энергии хватит ещё не менее чем на 5 миллиардов лет. И за счёт неё будут работать фотоэлементы, термоэлементы и даже какие-нибудь паровые котлы, для которых вода была бы нагрета с помощью линз или сферических зеркал.

Библиографическая ссылка

Силаев И.В., Радченко Т.И. ПРОБЛЕМЫ СОЗДАНИЯ УСТАНОВОК ДЛЯ ТЕРМОЯДЕРНОГО СИНТЕЗА // Международный журнал прикладных и фундаментальных исследований. – 2014. – № 1. – С. 37-38;
URL: https://applied-research.ru/ru/article/view?id=4539 (дата обращения: 19.09.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

С физической точки зрения задача формулируется несложно. Для осуществления самоподдерживающейся реакции ядерного синтеза необходимо и достаточно соблюсти два условия.

1. Энергия, участвующих в реакции ядер, должна составлять не менее 10 кэВ. Чтобы пошел ядерный синтез, участвующие в реакции ядра должны попасть в поле ядерных сил, радиус действия которых 10-12-10-13 с.см. Однако атомные ядра обладают положительным электрическим зарядом, а одноименные заряды отталкиваются. На рубеже действия ядерных сил энергия кулоновского отталкивания составляет величину порядка 10 кэВ. Чтобы преодолеть этот барьер, ядра при столкновении должны иметь кинетическую энергию, по крайней мере не меньше данной величины.

2. Произведение концентрации реагирующих ядер на время удержания, в течение которого они сохраняют указанную энергию, должно быть не менее 1014 с.см-3. Это условие - так называемый критерий Лоусона - определяет предел энергетической выгодности реакции. Чтобы энергия, выделившаяся в реакции синтеза, хотя бы покрывала расходы энергии на инициирование реакции, атомные ядра должны претерпеть много столкновений. В каждом столкновении, при котором происходит реакция синтеза между дейтерием (D) и тритием (Т), выделяется 17,6 МэВ энергии, т. е. примерно 3.10-12 Дж. Если, например, на поджиг затрачивается энергия 10 МДж, то реакция будет неубыточной, если в ней примут участие не менее 3.1018 пар D-T. А для этого довольно плотную плазму высокой энергии нужно удерживать в реакторе достаточно долго. Такое условие и выражается критерием Лоусона.

Если удастся одновременно выполнить оба требования, проблема управляемого термоядерного синтеза будет решена.

Однако техническая реализация данной физической задачи сталкивается с огромными трудностями. Ведь энергия 10 кэВ - это температура 100 миллионов градусов. Вещество при такой температуре удержать в течение даже долей секунды можно только в вакууме, изолировав его от стенок установки.

Но существует и другой метод решения этой проблемы – холодный термояд. Что такое холодный термояд - это аналог "горячей" термоядерной реакции проходящий при комнатной температуре.

В природе существует как минимум, два способа изменения материи внутри одной мерности континуума. Можно вскипятить воду на огне, т.е. термически, а можно в СВЧ печи, т.е. частотно. Результат один – вода закипает, разница лишь в том, что частотный метод более быстрый. Также используется достижение сверхвысокой температуры, чтобы расщепить ядро атома. Термический способ даёт неуправляемую ядерную реакцию. Энергия холодного термояда – энергия переходного состояния. Одним из основных условий конструкции реактора для проведения реакции холодного термояда есть условие его пирамидально – кристаллической формы. Другим важным условием есть наличие вращающегося магнитного и торсионного полей. Пересечение полей происходит в точке неустойчивого равновесия ядра водорода.

Учёные Рузи Талейархан из Ок-Риджской Национальной Лаборатории, Ричард Лейхи из Политехнического Университета им. Ренссилира и академик Роберт Нигматулин - зафиксировали в лабораторных условиях холодную термоядерную реакцию.

Группа использовала мензурку с жидким ацетоном размером с два-три стакана. Сквозь жидкость интенсивно пропускались звуковые волны, производя эффект, известный в физике как акустическая кавитация, следствием которой является сонолюминесценция. Во время кавитации в жидкости появлялись маленькие пузыри, которые увеличивались до двух миллиметров в диаметре и взрывались. Взрывы сопровождались вспышками света и выделением энергии т.е. температура внутри пузырьков в момент взрыва достигала 10 миллионов градусов по Кельвину, а выделяемой энергии, по утверждению экспериментаторов, достаточно для осуществления термоядерного синтеза.

"Технически" суть реакции заключается в том, что в результате соединения двух атомов дейтерия образуется третий - изотоп водорода, известный как тритий, и нейтрон, характеризующийся колоссальным количеством энергии.

3.1 Экономические проблемы

При создании УТС предполагается, что это будет крупная установка, оснащенная мощными компьютерами. Это будет целый маленький город. Но в случае аварии или поломки оборудования, работа станции будет нарушена.

Это не предусмотрено например в современных проектах АЭС. Считается что главное их построить, а что будет потом не важно.

Но в случае отказа 1 станции много городов останется без электроэнергии. Это можно наблюдать на примере АЭС в Армении. Вывоз радиоактивных отходов стал очень дорог. По требованию зеленых АЭС была закрыта. Население осталось без электроэнергии, оборудование электростанции износилось, а деньги выделенные международными организациями на восстановление были растрачены.

Серьезной экономической проблемой является дезактивация заброшенных производств, где производилась переработка урана. Например "в городе Актау - собственный маленький "чернобыль". Он расположен на территории химико-гидрометаллургического завода (ХГМЗ). Излучение гамма-фона в цехе по переработке урана (ГМЦ) местами достигает 11000 микрорентген в час, средний уровень фона - 200 микрорентген (Обычный естественный фон от 10 до 25 микрорентген в час). После остановки завода здесь вообще не проводилась дезактивация. Значительная часть оборудования, около пятнадцати тысяч тонн, имеет уже неснимаемую радиоактивность. При этом столь опасные предметы хранятся под открытым небом, плохо охраняются и постоянно растаскиваются с территории ХГМЗ.

Поэтому раз не существует вечных производств, в связи с появлением новых технологий УТС может быть закрыта и тогда предметы, металлы c предприятия попадут на рынок и пострадает местное население.

В системе охлаждения УТС будет использоваться вода. Но по данным экологов, если брать статистику по АЭС, вода из этих водоемов не пригодна для питья.

По данным экспертов, водоем полон тяжелых металлов (в частности, тория-232), и в некоторых местах уровень гамма-излучения достигает 50 - 60 микрорентген в час.

То есть сейчас, при строительстве АЭС не предусматриваются средства, которые бы возвращали местность в первоначальное состояние. И после закрытия предприятия никто не знает как захоронить накопившиеся отходы и очистить бывшее предприятие.

3.2 Медицинские проблемы

К вредным воздействиям УТС относится выработка мутантов вирусов и бактерий, вырабатывающих вредные вещества. Особенно это касается вирусов и бактерий, находящихся в теле человека. Появление злокачественных опухолей и заболевания раком, будет скорее всего распространенным заболеванием жителей поселков, живущих рядом с УТС. Жители всегда больше страдают, так как у них нет никаких средств защиты. Дозиметры дороги, а лекарства недоступны. Отходы от УТС будут сбрасывать в реки, стравливать в воздух или закачивать в подземные пласты, что происходит сейчас на АЭС.

Помимо повреждений, проявляющихся вскоре после облучения в больших дозах, ионизирующее излучение вызывает отдаленные последствия. В основном канцерогенез и генетические нарушения, которые могут возникнуть при любых дозах и характере облучения(разовом, хроническом, локальном).

По сообщениям от врачей, которые регистрировали заболевания работников АЭС, сначала идут сердечно сосудистые заболевания(инфаркты), затем рак. Сердечная мышца истончается под действием радиации, становиться дряблой, менее прочной. Встречаются совсем непонятные заболевания. Например отказ работы печени. Но почему это происходит, никто из врачей до сих пор не знает. При попадании радиоактивных веществ при аварии в дыхательные пути врачи вырезают поврежденные ткани легкого и трахеи и инвалид ходит с переносным устройством, для дыхания

4. Заключение

Человечеству нужна энергия, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы традиционных природных топлив (нефти, угля, газа и др.) конечны. Конечны также и запасы ядерного топлива - урана и тория, из которого можно получить в реакторах-размножителях плутоний. Практически неисчерпаемы запасы термоядерного топлива – водорода.

В 1991 году впервые удалось получить существенное количество энергии - приблизительно 1.7 миллион ватт в результате управляемого ядерного синтеза в Объединенной европейской лаборатории (Торус). В декабре 1993 года, исследователи в Принстонском университете использовали реактор типа токамак для реакции синтеза, чтобы произвести управляемую ядерную реакцию, выделенная энергия равнялась 5.6 миллионов ватт. Однако, и в реакторе типа токамак и в лаборатории Торус затратили большее количество энергии, чем было получено.

Если получение энергии ядерного синтеза станет практически доступным, то это даст безграничный источник топлива

5. Список литературы

1)Журнал "Новый взгляд" (Физика; Для будущей элиты).

2)Учебник Физики 11 класс.

3)Академия энергетика (аналитика; идеи; проекты).

4) Люди и атомы (Уильям Лоуренс).

5) Элементы вселенной (Сиборг и Вэленс).

6) Советский Энциклопедический Словарь.

7) Энциклопедия Encarta 96.

8) Астрономия- http://www.college.ru./astronomy.

1. Введение

3. Проблемы управления термоядерным синтезом

3.1 Экономические проблемы

3.2 Медицинские проблемы

4. Заключение

5. Список литературы


1. Введение

Проблема управляемого термоядерного синтеза - одна из важнейших задач, стоящих перед человечеством.

Человеческая цивилизация не может существовать, а тем более развиваться без энергии. Все хорошо понимают, что освоенные источники энергии, к сожалению, могут скоро истощиться. По данным Мирового энергетического совета, разведанных запасов углеводородного топлива на Земле осталось на 30 лет.

Сегодня основными источниками энергии служат нефть, газ и уголь.

По оценкам специалистов, запасы этих ископаемых на исходе. Почти не осталось разведанных, годных к освоению месторождений нефти и уже наши внуки могут столкнуться с очень серьезной проблемой нехватки энергии.

Наиболее обеспеченные топливом атомные электростанции могли бы, конечно, еще не одну сотню лет снабжать человечество электроэнергией.

Объект исследования: Проблемыуправляемого термоядерного синтеза.

Предмет исследования: Термоядерный синтез.

Цель исследования: Решить проблему управления термоядерным синтезом;

Задачи исследования:

· Изучить виды термоядерных реакций.

· Рассмотреть все возможные варианты донесения энергии, выделявшийся во время термоядерной реакции, до человека.

· Выдвинуть теорию о преобразования энергии в электричество.

Исходный факт:

Ядерная энергия выделяется при распаде или синтезе атомных ядер. Любая энергия - физическая, химическая, или ядерная проявляется своей способностью выполнять работу, излучать высокую температуру или радиацию. Энергия в любой системе всегда сохраняется, но она может быть передана другой системе или изменена по форме.

Достижению условий управляемого термоядерного синтеза препятствуют несколько основных проблем:

· Во-первых, нужно нагреть газ до очень высокой температуры.

· Во-вторых, необходимо контролировать количество реагирующих ядер в течение достаточно долгого времени.

· В-третьих, количество выделяемой энергии должно быть больше, чем было затрачено для нагревания и ограничения плотности газа.

· Следующая проблема – накопление этой энергии и преобразование её в электричество

2. Термоядерные реакции на Солнце

Что является источником солнечной энергии? Какова природа процессов, в ходе которых производится огромное количество энергии? Сколько времени будет еще светить Солнце?

Первые попытки ответить на эти вопросы были сделаны астрономами в середине ХIX века, после формулирования физиками закона сохранения энергии.

Роберт Майер предположил, что Солнце светит за счет постоянной бомбардировки поверхности метеоритами и метеорными частицами. Эта гипотеза была отвергнута, так как простой расчет показывает, что для поддержания светимости Солнца на современном уровне необходимо, чтобы на него за каждую секунду выпадало 2∙10 15 кг метеорного вещества. За год это составит 6∙10 22 кг, а за время существования Солнца, за 5 миллиардов лет – 3∙10 32 кг. Масса Солнца М = 2∙10 30 кг, поэтому за пять миллиардов лет на Солнце должно было выпасть вещества в 150 раз больше массы Солнца.

Вторая гипотеза была высказана Гельмгольцем и Кельвином также в середине ХIX века. Они предположили, что Солнце излучает за счет сжатия на 60–70 метров ежегодно. Причина сжатия – взаимное притяжение частиц Солнца, именно поэтому данная гипотеза получила название контракционной. Если сделать расчет по данной гипотезе, то возраст Солнца будет не больше 20 миллионов лет, что противоречит современным данным, полученным по анализу радиоактивного распада элементов в геологических образцах земного грунта и грунта Луны.

Третью гипотезу о возможных источниках энергии Солнца высказал Джеймс Джинс в начале ХХ века. Он предположил, что в недрах Солнца содержатся тяжелые радиоактивные элементы, которые самопроизвольно распадаются, при этом излучается энергия. Например, превращение урана в торий и затем в свинец, сопровождается выделением энергии. Последующий анализ этой гипотезы также показал ее несостоятельность; звезда, состоящая из одного урана, не выделяла бы достаточно энергии для обеспечения наблюдаемой светимости Солнца. Кроме того, существуют звезды, по светимости во много раз превосходящие светимость нашей звезды. Маловероятно, что в тех звездах запасы радиоактивного вещества будут также больше.

Самой вероятной гипотезой оказалась гипотеза синтеза элементов в результате ядерных реакций в недрах звезд.

В 1935 году Ханс Бете выдвинул гипотезу, что источником солнечной энергии может быть термоядерная реакция превращения водорода в гелий. Именно за это Бете получил Нобелевскую премию в 1967 году.

Химический состав Солнца примерно такой же, как и у большинства других звезд. Примерно 75 % – это водород, 25 % – гелий и менее 1 % – все другие химические элементы (в основном, углерод, кислород, азот и т.д.). Сразу после рождения Вселенной "тяжелых" элементов не было совсем. Все они, т.е. элементы тяжелее гелия и даже многие альфа-частицы, образовались в ходе "горения" водорода в звездах при термоядерном синтезе. Характерное время жизни звезды типа Солнца десять миллиардов лет.

Основной источник энергии – протон-протонный цикл – очень медленная реакция (характерное время 7,9∙10 9 лет), так как обусловлена слабым взаимодействием. Ее суть состоит в том, что из четырех протонов получается ядро гелия. При этом выделяются пара позитронов и пара нейтрино, а также 26,7 МэВ энергии. Количество нейтрино, излучаемое Солнцем за секунду, определяется только светимостью Солнца. Поскольку при выделении 26,7 МэВ рождается 2 нейтрино, то скорость излучения нейтрино: 1,8∙10 38 нейтрино/с. Прямая проверка этой теории – наблюдение солнечных нейтрино. Нейтрино высоких энергий (борные) регистрируются в хлор-аргонных экспериментах (эксперименты Дэвиса) и устойчиво показывают недостаток нейтрино по сравнению с теоретическим значением для стандартной модели Солнца. Нейтрино низких энергий, возникающие непосредственно в рр-реакции, регистрируются в галлий-германиевых экспериментах (GALLEX в Гран Сассо (Италия – Германия) и SAGE на Баксане (Россия – США)); их также "не хватает".

По некоторым предположениям, если нейтрино имеют отличную от нуля массу покоя, возможны осцилляции (превращения) различных сортов нейтрино (эффект Михеева – Смирнова – Вольфенштейна) (существует три сорта нейтрино: электронное, мюонное и тауонное нейтрино). Т.к. другие нейтрино имеют гораздо меньшие сечения взаимодействия с веществом, чем электронное, наблюдаемый дефицит может быть объяснен, не меняя стандартной модели Солнца, построенной на основе всей совокупности астрономических данных.

Каждую секунду Солнце перерабатывает около 600 миллионов тонн водорода. Запасов ядерного топлива хватит еще на пять миллиардов лет, после чего оно постепенно превратится в белый карлик.

Центральные части Солнца будут сжиматься, разогреваясь, а тепло, передаваемое при этом внешней оболочке, приведет к ее расширению до размеров, чудовищных по сравнению с современными: Солнце расширится настолько, что поглотит Меркурий, Венеру и будет тратить "горючее" в сто раз быстрее, чем в настоящее время. Это приведет к увеличению размеров Солнца; наша звезда станет красным гигантом, размеры которого сравнимы с расстоянием от Земли до Солнца!

Мы, конечно, будем заранее поставлены в известность о таком событии, поскольку переход к новой стадии займет примерно 100–200 миллионов лет. Когда температура центральной части Солнца достигнет 100 000 000 К, начнет сгорать и гелий, превращаясь в тяжёлые элементы, и Солнце вступит в стадию сложных циклов сжатия и расширения. На последней стадии наша звезда потеряет внешнюю оболочку, центральное ядро будет иметь невероятно большую плотность и размеры, как у Земли. Пройдет еще несколько миллиардов лет, и Солнце остынет, превратившись в белый карлик.

3. Проблемы управляемого термоядерного синтеза

Исследователи всех развитых стран связывают надежды на преодоление грядущего энергетического кризиса с управляемой термоядерной реакцией. Такая реакция - синтез гелия из дейтерия и трития - миллионы лет протекает на Солнце, а в земных условиях ее вот уже пятьдесят лет пытаются осуществить в гигантских и очень дорогих лазерных установках, токамаках (устройство для осуществления реакции термоядерного синтеза в горячей плазме) и стеллараторах (замкнутая магнитная ловушка для удержания высокотемпературной плазмы). Однако есть и другие пути решения этой непростой задачи, и вместо огромных токамаков для осуществления термоядерного синтеза можно будет, вероятно, использовать довольно компактный и недорогой коллайдер - ускоритель на встречных пучках.

Для работы Токамака необходимо очень небольшое количество лития и дейтерия. Например, реактор с электрической мощностью 1 ГВт сжигает около 100 кг дейтерия и 300 кг лития в год. Если предположить, что все термоядерные электростанции будут производить 10 трлн. кВт/ч электроэнергии в год, то есть столько же, сколько сегодня производят все электростанции Земли, то мировых запасов дейтерия и лития хватит на то, чтобы снабжать человечество энергией в течение многих миллионов лет.

Кроме слияния дейтерия и лития возможен чисто солнечный термояд, когда соединяются два атома дейтерия. В случае освоения этой реакции энергетические проблемы будут решены сразу и навсегда.

В любом из известных вариантов управляемого термоядерного синтеза (УТС) термоядерные реакции не могут войти в режим неконтролируемого нарастания мощности, следовательно, таким реакторам не присуща внутренняя безопасность.

С физической точки зрения задача формулируется несложно. Для осуществления самоподдерживающейся реакции ядерного синтеза необходимо и достаточно соблюсти два условия.

1. Энергия, участвующих в реакции ядер, должна составлять не менее 10 кэВ. Чтобы пошел ядерный синтез, участвующие в реакции ядра должны попасть в поле ядерных сил, радиус действия которых 10-12-10-13 с.см. Однако атомные ядра обладают положительным электрическим зарядом, а одноименные заряды отталкиваются. На рубеже действия ядерных сил энергия кулоновского отталкивания составляет величину порядка 10 кэВ. Чтобы преодолеть этот барьер, ядра при столкновении должны иметь кинетическую энергию, по крайней мере не меньше данной величины.

2. Произведение концентрации реагирующих ядер на время удержания, в течение которого они сохраняют указанную энергию, должно быть не менее 1014 с.см-3. Это условие - так называемый критерий Лоусона - определяет предел энергетической выгодности реакции. Чтобы энергия, выделившаяся в реакции синтеза, хотя бы покрывала расходы энергии на инициирование реакции, атомные ядра должны претерпеть много столкновений. В каждом столкновении, при котором происходит реакция синтеза между дейтерием (D) и тритием (Т), выделяется 17,6 МэВ энергии, т. е. примерно 3.10-12 Дж. Если, например, на поджиг затрачивается энергия 10 МДж, то реакция будет неубыточной, если в ней примут участие не менее 3.1018 пар D-T. А для этого довольно плотную плазму высокой энергии нужно удерживать в реакторе достаточно долго. Такое условие и выражается критерием Лоусона.

Если удастся одновременно выполнить оба требования, проблема управляемого термоядерного синтеза будет решена.

Однако техническая реализация данной физической задачи сталкивается с огромными трудностями. Ведь энергия 10 кэВ - это температура 100 миллионов градусов. Вещество при такой температуре удержать в течение даже долей секунды можно только в вакууме, изолировав его от стенок установки.

Но существует и другой метод решения этой проблемы – холодный термояд. Что такое холодный термояд - это аналог "горячей" термоядерной реакции проходящий при комнатной температуре.

В природе существует как минимум, два способа изменения материи внутри одной мерности континуума. Можно вскипятить воду на огне, т.е. термически, а можно в СВЧ печи, т.е. частотно. Результат один – вода закипает, разница лишь в том, что частотный метод более быстрый. Также используется достижение сверхвысокой температуры, чтобы расщепить ядро атома. Термический способ даёт неуправляемую ядерную реакцию. Энергия холодного термояда – энергия переходного состояния. Одним из основных условий конструкции реактора для проведения реакции холодного термояда есть условие его пирамидально – кристаллической формы. Другим важным условием есть наличие вращающегося магнитного и торсионного полей. Пересечение полей происходит в точке неустойчивого равновесия ядра водорода.

Учёные Рузи Талейархан из Ок-Риджской Национальной Лаборатории, Ричард Лейхи из Политехнического Университета им. Ренссилира и академик Роберт Нигматулин - зафиксировали в лабораторных условиях холодную термоядерную реакцию.

Группа использовала мензурку с жидким ацетоном размером с два-три стакана. Сквозь жидкость интенсивно пропускались звуковые волны, производя эффект, известный в физике как акустическая кавитация, следствием которой является сонолюминесценция. Во время кавитации в жидкости появлялись маленькие пузыри, которые увеличивались до двух миллиметров в диаметре и взрывались. Взрывы сопровождались вспышками света и выделением энергии т.е. температура внутри пузырьков в момент взрыва достигала 10 миллионов градусов по Кельвину, а выделяемой энергии, по утверждению экспериментаторов, достаточно для осуществления термоядерного синтеза.

"Технически" суть реакции заключается в том, что в результате соединения двух атомов дейтерия образуется третий - изотоп водорода, известный как тритий, и нейтрон, характеризующийся колоссальным количеством энергии.

3.1 Экономические проблемы

При создании УТС предполагается, что это будет крупная установка, оснащенная мощными компьютерами. Это будет целый маленький город. Но в случае аварии или поломки оборудования, работа станции будет нарушена.

Это не предусмотрено например в современных проектах АЭС. Считается что главное их построить, а что будет потом не важно.

Но в случае отказа 1 станции много городов останется без электроэнергии. Это можно наблюдать на примере АЭС в Армении. Вывоз радиоактивных отходов стал очень дорог. По требованию зеленых АЭС была закрыта. Население осталось без электроэнергии, оборудование электростанции износилось, а деньги выделенные международными организациями на восстановление были растрачены.

Серьезной экономической проблемой является дезактивация заброшенных производств, где производилась переработка урана. Например "в городе Актау - собственный маленький "чернобыль". Он расположен на территории химико-гидрометаллургического завода (ХГМЗ). Излучение гамма-фона в цехе по переработке урана (ГМЦ) местами достигает 11000 микрорентген в час, средний уровень фона - 200 микрорентген (Обычный естественный фон от 10 до 25 микрорентген в час). После остановки завода здесь вообще не проводилась дезактивация. Значительная часть оборудования, около пятнадцати тысяч тонн, имеет уже неснимаемую радиоактивность. При этом столь опасные предметы хранятся под открытым небом, плохо охраняются и постоянно растаскиваются с территории ХГМЗ.

Поэтому раз не существует вечных производств, в связи с появлением новых технологий УТС может быть закрыта и тогда предметы, металлы c предприятия попадут на рынок и пострадает местное население.

В системе охлаждения УТС будет использоваться вода. Но по данным экологов, если брать статистику по АЭС, вода из этих водоемов не пригодна для питья.

По данным экспертов, водоем полон тяжелых металлов (в частности, тория-232), и в некоторых местах уровень гамма-излучения достигает 50 - 60 микрорентген в час.

То есть сейчас, при строительстве АЭС не предусматриваются средства, которые бы возвращали местность в первоначальное состояние. И после закрытия предприятия никто не знает как захоронить накопившиеся отходы и очистить бывшее предприятие.

3.2 Медицинские проблемы

К вредным воздействиям УТС относится выработка мутантов вирусов и бактерий, вырабатывающих вредные вещества. Особенно это касается вирусов и бактерий, находящихся в теле человека. Появление злокачественных опухолей и заболевания раком, будет скорее всего распространенным заболеванием жителей поселков, живущих рядом с УТС. Жители всегда больше страдают, так как у них нет никаких средств защиты. Дозиметры дороги, а лекарства недоступны. Отходы от УТС будут сбрасывать в реки, стравливать в воздух или закачивать в подземные пласты, что происходит сейчас на АЭС.

Помимо повреждений, проявляющихся вскоре после облучения в больших дозах, ионизирующее излучение вызывает отдаленные последствия. В основном канцерогенез и генетические нарушения, которые могут возникнуть при любых дозах и характере облучения(разовом, хроническом, локальном).

По сообщениям от врачей, которые регистрировали заболевания работников АЭС, сначала идут сердечно сосудистые заболевания(инфаркты), затем рак. Сердечная мышца истончается под действием радиации, становиться дряблой, менее прочной. Встречаются совсем непонятные заболевания. Например отказ работы печени. Но почему это происходит, никто из врачей до сих пор не знает. При попадании радиоактивных веществ при аварии в дыхательные пути врачи вырезают поврежденные ткани легкого и трахеи и инвалид ходит с переносным устройством, для дыхания

4. Заключение

Человечеству нужна энергия, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы традиционных природных топлив (нефти, угля, газа и др.) конечны. Конечны также и запасы ядерного топлива - урана и тория, из которого можно получить в реакторах-размножителях плутоний. Практически неисчерпаемы запасы термоядерного топлива – водорода.

В 1991 году впервые удалось получить существенное количество энергии - приблизительно 1.7 миллион ватт в результате управляемого ядерного синтеза в Объединенной европейской лаборатории (Торус). В декабре 1993 года, исследователи в Принстонском университете использовали реактор типа токамак для реакции синтеза, чтобы произвести управляемую ядерную реакцию, выделенная энергия равнялась 5.6 миллионов ватт. Однако, и в реакторе типа токамак и в лаборатории Торус затратили большее количество энергии, чем было получено.

Если получение энергии ядерного синтеза станет практически доступным, то это даст безграничный источник топлива

5. Список литературы

1)Журнал "Новый взгляд" (Физика; Для будущей элиты).

2)Учебник Физики 11 класс.

3)Академия энергетика (аналитика; идеи; проекты).

4) Люди и атомы (Уильям Лоуренс).

5) Элементы вселенной (Сиборг и Вэленс).

6) Советский Энциклопедический Словарь.

7) Энциклопедия Encarta 96.

8) Астрономия- http://www.college.ru./astronomy.

Разработана новую методика для эффективного замедления убегающих электронов путем введения «тяжелых» ионов, таких как неон или аргон, в реактор.

Функциональный термоядерный реактор - это все еще мечта, но она в конечном итоге может реализоваться благодаря многочисленным исследованиям и экспериментам с целью разблокировки неограниченного запаса чистой энергии. Проблемы с которыми ученые сталкиваются при получении ядерного синтеза, несомненно, серьезные и действительно сложные, однако все преодолимо. И кажется, что одна из главных проблем решена.

Ядерный синтез - это не придуманный человечеством процесс, а существующий в природе изначально, процесс питает наше Солнце. Глубоко внутри нашей родной звезды атомы водорода расположены вместе, чтобы сформировать гелий, который является толчковым для процесса. Термоядерный синтез высвобождает огромное количество энергии, но требует огромных затрат на создание чрезвычайно высокого давления и температуры, что сложно поддается контролируемому воспроизведению на Земле.

В прошлом году исследователи из Массачусетского технологического института приблизили нас к синтезу, поместив плазму в условия с тем самым, подходящим, давлением, теперь, два исследователя из Университета Чалмерса открыли еще один кусочек головоломки.

Одна из проблем, с которой инженеры столкнулись, - это убегающие электроны. Эти электроны, с чрезвычайно высокой энергией, могут внезапно и неожиданно, разогнаться до очень высокой скорости, что может разрушить стену реактора без предупреждения.

Докторанты Линнея Хешлов и Оле Эмбероз разработали новую методику для эффективного замедления этих убегающих электронов путем введения «тяжелых» ионов, таких как неон или аргон, в реактор. В итоге, электроны, соударяясь с высоким зарядом в ядра этих ионов, замедляются и становятся гораздо более управляемыми.

«Когда мы сможем эффективно замедлять убегающие электроны, мы подойдем на один шаг ближе к функциональному термоядерному реактору», - говорит Линнеа Хешлов.

Исследователи создали модель, которая может эффективно прогнозировать энергию электронов и поведение. Используя Математическое моделирование плазмы физики теперь могут эффективно контролировать скорость убегания электронов, не прерывая процесс синтеза.

«Многие считают, что это будет работать, но легче съездить на Марс, чем добиться слияния», - говорит Линнеа Хешлов: «Можно сказать, что мы пытаемся собрать здесь звезды на земле, и это может занять некоторое время. Он берет невероятно высокие температуры, горячее, чем центр солнца, для нас, чтобы успешно добиться слияния здесь, на земле. Поэтому я надеюсь, что все это дело времени».

по материалам newatlas.com, перевод

Лекция № 2.

Пути решения проблемы термоядерного синтеза

Основные направления исследований по ядерному синтезу: а) системы с магнитным удержанием;

б) квазистационарные (открытые и закрытые); импульсные; в) системы с инерциальным удержанием (лазерные, с различными пучками, с сжимающейся оболочкой).

К настоящему времени сформировались два в значительной мере независимых подхода к решению проблемы управляемого термоядерного синтеза. Первый из них основан на возможности удержания и термоизоляции высокотемпературной плазмы относительно низкой плотности магнитным полем специальной конфигурации в течение сравнительно длительного времени (1-10 с).

Другой путь импульсный. При импульсном подходе необходимо быстро нагреть и сжать малые порции вещества до таких температур и плотностей, при которых термоядерные реакции успевали бы эффективно протекать за время существования ничем не удерживаемой или, как говорят, инерциально удерживаемой плазмы. Оценки показывают, что, для того чтобы сжать вещество до плотностей 100-1000 г/см 3 и нагреть его до температуры 5-10 кэВ, необходимо создать давление на поверхности сферической мишени 10 9 атм, то есть нужен источник, который позволял бы подвести к поверхности мишени энергию с плотностью мощности 10 15 Вт/см 2 .

Магнитное удержание плазмы.

Пусть температура плазмы T и концентрации взаимодействующих частиц n 1 и n 2 . Если скорость данного иона относительно второго есть v 1,2 , то вероятность того, что данный ион прореагирует за 1 секунду с каким-либо из ионов второго рода, дается выражением  v 1,2 n 2 . Здесь  - эффективное сечение реакции синтеза, величина, быстро растущая со скоростью. Если бы все n 1 ионов первого рода обладали одной и той же скоростью v 1,2 , то общее число реакций, происходящих в 1 см 3 плазмы за 1 сек, определялось бы равенством: N 1,2 = n 1 n 2  v 1,2 . При заданной температуре произведение должно быть усреднено по максвелловскому распределению. Обозначая через энергию, выделяющуюся при каждом акте реакции, получим выражение для удельной мощности в виде W =n 1 n 2 <  v> Зависимость  (v) для рассматриваемых реакций известна, следовательно, величина < v> может быть вычислена, а вместе с ней может быть найдена и удельная мощность W при любой температуре и плотности плазмы.
Численные оценки показывают, что величина
W быстро растет с температурой, при температуре "горения" в несколько сотен миллионов градусов и при плотности плазмы ~10 15 см -3 она составляет около 10 5 квт/м 3 . Повышение температуры и плотности приводит к более энергонапряженным режимам, при которых должны прогрессивно возрастать технические трудности в реализации проекта. Более "мягкие" режимы приводят, при не слишком малой общей мощности термоядерного реактора, к очень большим размерам системы. Таким образом, взятые значения представляют собой разумный технический компромисс между противоречивыми требованиями. Заметим еще, что использованные оценки относятся к дейтериевой плазме; для равнокомпонентной смеси дейтерия и трития оптимальные "рабочие" температуры ниже.
Далее возникает следующий естественный вопрос: каким образом могут быть созданы указанные условия в зоне реакции? Точнее: как нагреть плазму до необходимых чрезвычайно высоких температур и как удержать нагретые частицы от разлета в течение времени, достаточного для протекания ядерных реакций? Главная трудность связана, по-видимому, со второй частью вопроса. Энергия, которая должна быть сообщена заданному объему плазмы с известной плотностью для ее нагревания до 10
8 K, представляет собой весьма скромную величину; она равна энергии, которую надо затратить, чтобы нагреть такой же объем воды всего на 1 K. Напротив, потоки частиц (и тепла) от зоны реакции к периферии будут огромны. Необходимо эффективно удерживать частицы в зоне реакции.
Основная идея, которая определила путь решения проблемы управляемого синтеза, состоит в использовании принципа магнитной термоизоляции. В Советском Союзе эта идея была высказана еще в 1950 г. А. Д. Сахаровым и И. Е. Таммом.
Коэффициент диффузии, а вместе с ним и коэффициент теплопроводности уменьшается на много порядков величины, если перемещение частиц происходит в направлении, перпендикулярном к сильному магнитному полю. Поэтому, если зона реакции отделена от стенок сильным магнитным полем, то можно надеяться на радикальное сокращение тепловых потоков. Величина удерживающего поля может быть найдена из равенства магнитного и газокинетического давления: H
2 /8  =nk(T e +T i ).
Для плазмы с выбранными параметрами (n~10
15 см -3 , T~10 8 K), необходимое для удержания поле должно составлять 25-30 килоэрстед. Эти большие величины отнюдь не выходят за пределы технических возможностей.
Мы говорим все время о теплопередаче в плазме поперек магнитного поля, но не следует забывать, что тепловые потоки вдоль силовых линий магнитного поля остаются незамагниченными; необходимо затруднить уход частиц и в этом направлении. Здесь открываются три возможности. Первая из них состоит в помещении плазмы в магнитную ловушку, т. е. в магнитное поле такой конфигурации, где оно усилено в областях ухода силовых линий из зоны реакции, в районе их пересечения со стенками; Вторая возможность состоит в ликвидации открытых концов силовых линий путем их сворачивания в кольцо. Наконец, третий путь состоит в использовании плазмы с относительно большой плотностью и в настолько быстром ее нагревании, что за время ухода вдоль силовых линий основная масса частиц успевает испытать ядерные столкновения.
Первая схема термоизоляции полностью себя оправдывает, если речь идет об удержании столь редкой плазмы, что ее можно рассматривать как собрание отдельных частиц. Большие времена жизни частиц в радиационных поясах Земли естественного и искусственного происхождения служат хорошим примером сказанному. Однако, в лабораторных опытах, выполненных с более плотной плазмой, т. е. в условиях, когда могут проявляться коллективные взаимодействия, обнаружились серьезные трудности. Времена жизни плазмы оказались на много порядков величины меньшими тех, которые можно было ожидать в результате столкновений плазменных частиц между собой или с молекулами остаточного газа и последующего ухода в конус потерь. Фактически времена жизни плазмы в некоторых моделях открытых ловушек составляли около 100 микросекунд (при плотности плазмы около 10
-9 см -3 ), тогда как времена жизни, обусловленные уходом в конус потерь, должны были измеряться минутами.
Этот результат качественно станет яснее, если учесть, что плазма, как всякий диамагнетик, должна выталкиваться из области более сильного поля. С этой точки зрения механизм действия магнитных пробок, удерживающих плазму внутри ловушки, вполне понятен. Но в ловушках рассматриваемого типа имеются также области, где поле убывает по мере удаления от оси по радиусу; здесь можно ожидать развития неустойчивости - появления плазменных "языков" или "желобков", перемещающихся поперек поля и переносящих плазму в сторону меньших значений поля. И действительно, прямые эксперименты указали на существование в этих ловушках неустойчивости "желобкового" типа, которая ограничивает время жизни плазмы.
Замыкая силовые линии, мы естественным образом приходим к установка типа кольцевого соленоида. Теперь магнитное поле повсюду ориентировано параллельно стенкам, и частицам, чтобы покинуть систему, надо двигаться поперек силовых линий. Но магнитное поле внутри тора слегка неоднородно, оно спадает к внешней стенке тора, что вызывает дрейф частиц. Дрейф в неоднородном магнитном поле происходит по нормали к направлению основного поля и к направлению его градиента и зависит от заряда частиц. Если ионы дрейфуют к верхней стенке тора, то электроны будут оседать на дно. Разделившиеся заряды создадут электрическое поле, и плазма, тем или иным способом образованная внутри тора, начнет, как целое, дрейфовать в скрещенных электрических и магнитных полях. Легко проверить, что окончательным итогом будет перемещение плазмы к внешней стенке тора.
Для компенсации этого дрейфа плазмы существуют различные способы. Можно пропускать через плазму продольный кольцевой ток, можно специальным образом усложнить соленоидальную обмотку или, скрутив тор, придать магнитной системе форму восьмерки. Топология магнитного поля во этих случаях меняется радикально.
Простейшие магнитные поля - постоянного магнита, прямого тока плоского контура, приводят как известно, в силу уравнения divB=0 к привычным картинам замкнутых силовых линий или линий, уходящих на бесконечность. Существует, однако, третья возможность, фактически наиболее общая: силовые линии могут оставаться в ограниченной области пространства, не замыкаясь и не уходя на бесконечность.

В приведенных примерах в результате деформации тороидальной магнитной системы и происходит преобразование замкнутых силовых линий - колец - в бесконечные силовые линии, непрерывно обвивающие кольцевую тороидальную ось и формирующие так называемые магнитные поверхности. Силовые линии, проходившие на различных расстояниях от оси тора, порождают (в простейшем случае) совокупность вложенных друг в друга коаксиальных магнитных поверхностей. В результате любая точка сечения тора оказывается соединенной с любой другой точкой сечения (равноудаленной от оси) силовой линией, принадлежащей к той или иной магнитной поверхности. Это означает, что перераспределение зарядов по сечению может осуществляться не поперек магнитного поля, а вдоль силовых линий. Поэтому накопление разноименных зарядов, а следовательно, и дрейф в скрещенных полях оказываются исключенными.
Варианты тороидальных систем с продольным током начали разрабатываться в Советском Союзе (установки типа "Токамак"), два других направления начали исследоваться в США (установки типа "Стелларатор").

В токамаках продольное магнитное поле создается катушками, которые могут питаться генератором с импульсной мощностью до 75 МВт. Вакуумные условия: начальное давление остаточных газов около 10 -8 мм рт. ст. Камера Токамака надета на железный сердечник и возникающий плазменный виток служит вторичной обмоткой импульсного трансформатора. Нагревание плазмы происходит за счет джоулева тепла, сильное продольное поле служит стабилизирующим каркасом. Полученные в токамаках параметры плазмы хотя и являются обнадеживающими, все еще сильно отличаются от тех, на которые можно было бы рассчитывать в случае идеально замагниченной плазмы. В частности, сравнительно небольшое время жизни указывает на существование неликвидированных типов неустойчивости, а следовательно, и на повышенную скорость диффузии.
Исследования на установках стеллараторного типа привели пока к более скромным результатам. Несмотря на длительность эксперимента и превосходные инженерные параметры системы, и в этом случае не удалось преодолеть неустойчивость плазмы. Диффузионные потоки на стенки во много раз превышают классические.

Был еще вариант решения проблемы термоядерного синтеза магнитным удержанием – импульсный. Здесь функции термоизоляции и нагревания плазмы возлагались на кратковременный импульс тока, который пропускается через разреженный дейтерий. За счет взаимодействия тока с собственным магнитным полем должно происходить сжатие плазменного шнура к оси разряда. Плазма оказывается отделенной от стенок сосуда собственным магнитным полем и должна нагреваться за счет работы сил сжатия и за счет джоулева тепла. На начальной стадии исследования предполагалось, что процесс сжатия квазистационарен, что в каждый момент времени магнитное давление, сжимающее плазму, уравновешивается газовым давлением. Температура вещества должна возрастать пропорционально квадрату силы тока, и численные оценки показывают, что при силе тока около 1 миллиона ампер, начальном давлении в 0,1 мм рт. ст. и диаметре сосуда в 200 мм температура плазменного шнура должна превышать 10 7 К. Правда, температура повысится на весьма короткое время (около 1 микросекунды), но в сильно сжатом плазменном шнуре будут происходить очень частые столкновения и можно рассчитывать на регистрацию нейтронного излучения от происходящих ядерных реакций.
В действительности картина квазистационарного сжатия оказывается грубо ошибочной. На начальной стадии процесса, после пробоя газового столба приложенным высоким напряжением, быстро нарастающий ток сосредоточивается в тонком поверхностном слое (скин-эффект). Внутренняя область столба почти не ионизована и не нагрета, газовое давление пренебрежимо мало и стягивание плазменной корочки к оси системы можно рассматривать с учетом одних сил инерции. В течение всего сжатия нет равновесия между газовым и магнитным давлением. Шнур стягивается к оси раньше, чем ток (а вместе с ним и магнитное давление) достигает максимума, но не остается в сжатом состоянии, а под действием тех же сил инерции начинает снова расширяться. Мало того, шнур неустойчив (вне шнура поле меняется как 1/r) и в результате развития макроскопических деформаций (перетяжки, изгибы) он касается стенок камеры, охлаждая и загрязняя плазму.
Замечательно, что нейтронное излучение плазмы при импульсном разряде в дейтерии все же наблюдалось. Это интересное явление было открыто группой советских физиков еще в 1952 г. Нейтронное излучение появляется не в результате нагревания всего имеющегося плазменного объема, а оказывается следствием столкновений малочисленной группы быстрых дейтонов, возникших в результате сложных ускорительных процессов в неустойчивом шнуре, с основной массой сравнительно холодной плазмы.
Увеличивая энергонапряженность системы, можно нагреть плазменный шнур до необходимых термоядерных температур к моменту первого сжатия шнура около оси и до начала развития неустойчивости. Однако для достижения условий, необходимых для получения термоядерной реакции с положительным энергетическим выходом, в предполагаемых опытах потребуется сосредоточение в импульсном разряде огромной энергии - около: 10
4 Мдж. Современная техника допускает сооружение импульсных установок на сотни мегаджоулей. Существуют конденсаторы, обладающие исключительно малой индуктивностью, разработаны низкоиндуктивные фидеры и весьма совершенные коммутационные устройства. Тем самым путь для дальнейшего прогресса в этом направлении открыт, но процесс приобретает характер мощного взрыва, эквивалентного по мощности взрыву нескольких тонн тротила, что совсем не похоже на плавно регулируемые управляемые термоядерные реакции.
В настоящее время работы с магнитными ловушками открытого типа с точки зрения решения проблемы термоядерного синтеза практически прекратились. Как показывают детальные расчеты, если потери частиц из ловушки всего в несколько раз превысят теоретический уровень, отвечающий полностью замагниченной теплопроводности, то осуществление термоядерного реактора с положительным энергетическим выходом становится невозможным.
Развитие импульсных процессов, по-видимому, достигло естественного предела, если иметь в виду реактор в качестве конечной цели. Но дальнейшие эксперименты могут привести к построению импульсных нейтронных источников огромной мощности. Своеобразным отходом от этих исследований явилось построение систем, предназначенных для ускорения сгустков плазмы.

Замкнутые магнитные системы представляются в настоящее время наиболее перспективными.

Лазерный термоядерный синтез.

Впервые идея использования мощного лазерного излучения для нагрева плотной плазмы до термоядерных температур была высказана Н.Г. Басовым и О.Н. Крохиным в начале 60-х годов. К настоящему времени сформировалось самостоятельное направление термоядерных исследований - лазерный термоядерный синтез (ЛТС).

Остановимся кратко на том, какие основные физические принципы заложены в концепцию достижения высоких степеней сжатия веществ и получения больших коэффициентов усиления по энергии с помощью лазерных микровзрывов. Рассмотрение построим на примере так называемого режима прямого сжатия. В этом режиме микросфера, наполненная термоядерным топливом, со всех сторон "равномерно" облучается многоканальным лазером. В результате взаимодействия греющего излучения с поверхностью мишени образуется горячая плазма с температурой в несколько килоэлектронвольт (так называемая плазменная корона), разлетающаяся навстречу лучу лазера с характерными скоростями 10 7 -10 8 см/с.

Не имея возможности более детально остановиться на процессах поглощения в плазменной короне, отметим, что в современных модельных экспериментах на уровне энергий лазерного излучения 10-100 кДж для мишеней, сравнимых по размерам с мишенями для больших коэффициентов усиления, удается достичь высоких (90%) коэффициентов поглощения греющего излучения.

Световое излучение не может проникнуть в плотные слои мишени (плотность твердого тела составляет 10 23 см -3 ). За счет теплопроводности энергия, поглощенная в плазме с электронной плотностью, меньшей n кр , передается в более плотные слои, где происходит абляция вещества мишени. Оставшиеся неиспаренными слои мишени под действием теплового и реактивного давления ускоряются к центру, сжимая и нагревая находящееся в ней топливо. В итоге энергия лазерного излучения превращается на рассматриваемой стадии в кинетическую энергию вещества, летящего к центру, и в энергию разлетающейся короны. Очевидно, что полезная энергия сосредоточена в движении к центру. Эффективность вклада световой энергии в мишень характеризуется отношением указанной энергии к полной энергии излучения - так называемым гидродинамическим коэффициентом полезного действия (КПД). Достижение достаточно высокого гидродинамического КПД (10-20%) является одной из важных проблем ЛТС.

Какие же процессы могут препятствовать достижению высоких степеней сжатия? Один из них заключается в том, что при термоядерных плотностях излучения q > 10 14 Вт/см 2 заметная доля поглощенной энергии трансформируется не в классическую волну электронной теплопроводности, а в потоки быстрых электронов, энергия которых много больше температуры плазменной короны (так называемые надтепловые электроны). Это может происходить как за счет резонансного поглощения, так и вследствие параметрических эффектов в плазменной короне. При этом длина пробега надтепловых электронов может оказаться сравнимой с размерами мишени, что приведет к предварительному прогреву сжимаемого топлива и невозможности получения предельных сжатий. Большой проникающей способностью обладают и рентгеновские кванты большой энергии (жесткое рентгеновское излучение), сопутствующие надтепловым электронам.

Тенденцией экспериментальных исследований последних лет является переход к использованию коротковолнового лазерного излучения (< 0,5 мкм) при умеренных плотностях потока (q < 10 15 Вт/см 2 ). Практическая возможность перехода к нагреву плазмы коротковолновым излучением связана с тем, что коэффициенты конверсии излучения твердотельного неодимого лазера (основного кандидата в драйверы для ЛТС) с длиной волны l = 1,06 мкм в излучения второй, третьей и четвертой гармоник с помощью нелинейных кристаллов достигает 70-80%. В настоящее время фактически все крупные лазерные установки на неодимовом стекле снабжены системами умножения частоты.

Физической причиной преимущества использования коротковолнового излучения для нагрева и сжатия микросфер является то, что с уменьшением длины волны увеличивается поглощение в плазменной короне и возрастают абляционное давление и гидродинамический коэффициент передачи. На несколько порядков уменьшается доля надтепловых электронов, генерируемых в плазменной короне, что является чрезвычайно выгодным для режимов как прямого, так и непрямого сжатия. Для непрямого сжатия принципиально и то, что с уменьшением длины волны увеличивается конверсия поглощенной плазмой энергии в мягкое рентгеновское излучение.

Остановимся теперь на режиме непрямого сжатия. Физический анализ показывает, что осуществление режима сжатия до высоких плотностей топлива оптимально для простых и сложных оболочечных мишеней с аспектным отношением R / DR в несколько десятков. Здесь R - радиус оболочки, DR - ее толщина. Однако сильное сжатие может быть ограничено развитием гидродинамических неустойчивостей, которые проявляются в отклонении движения оболочки на стадиях ее ускорения и торможения в центре от сферической симметрии и зависят от отклонений начальной формы мишени от идеально сферической, неоднородного распределения падающих лазерных лучей по ее поверхности. Развитие неустойчивости при движении оболочки к центру приводит сначала к отклонению движения от сферически-симметричного, затем к турбулизации течения и в конце концов к перемешиванию слоев мишени и дейтериево-тритиевого горючего. В результате в конечном состоянии может возникнуть образование, форма которого резко отличается от сферического ядра, а средние плотность и температура значительно ниже величин, соответствующих одномерному сжатию. При этом начальная структура мишени (например, определенный набор слоев) может быть полностью нарушена.

Физическая природа такого типа неустойчивости эквивалентна неустойчивости слоя ртути, находящегося на поверхности воды в поле тяжести. При этом, как известно, происходит полное перемешивание ртути и воды, то есть в конечном состоянии ртуть окажется внизу. Аналогичная ситуация и может происходить при ускоренном движении к центру вещества мишени, имеющей сложную структуру, или в общем случае при наличии градиентов плотности и давления.

Требования к качеству мишеней достаточно жестки. Так, неоднородность толщины стенки микросферы не должна превышать 1%, однородность распределения поглощения энергии по поверхности мишени 0,5%.

Предложение использовать схему непрямого сжатия как раз и связано с возможностью решить проблему устойчивости сжатия мишени. Излучение лазера заводится в полость, фокусируясь на внутренней поверхности внешней оболочки, состоящей из вещества с большим атомным номером, например золота. Как уже отмечалось, до 80% поглощенной энергии трансформируется в мягкое рентгеновское излучение, которое нагревает и сжимает внутреннюю оболочку. К преимуществам такой схемы относятся возможность достижения более высокой однородности распределения поглощенной энергии по поверхности мишени, упрощение схемы лазера и условий фокусировки и т.д. Однако имеются и недостатки, связанные с потерей энергии на конверсию в рентгеновское излучение и сложностью ввода излучения в полость.

В настоящее время интенсивно разрабатывается элементная база и создаются проекты лазерных установок мегаджоульного уровня. В Ливерморской лаборатории начато создание установки на неодимовом стекле с энергией Е = 1,8 МДж. Стоимость проекта составляет 2 млрд долл. Создание установки аналогичного уровня запланировано и во Франции. На этой установке планируется достижение коэффициента усиления по энергии Q ~ 100. Нужно сказать, что запуск установок такого масштаба не только приблизит возможность создания термоядерного реактора на основе лазерного термоядерного синтеза, но и предоставит в распоряжение исследователей уникальный физический объект - микровзрыв с энерговыделением 10 7 -10 9 Дж, мощный источник нейтронного, нейтринного, рентгеновского и g-излучений. Это будет иметь не только большое общефизическое значение (возможность исследовать вещества в экстремальных состояниях, физики горения, уравнения состояния, лазерных эффектов и т.д.), но и позволит решить специальные задачи прикладного, в том числе военного, характера.

Для реактора на основе лазерного термоядерного синтеза необходимо, однако, создание лазера мегаджоульного уровня, работающего с частотой повторения в несколько герц. В ряде лабораторий исследуются возможности создания таких систем на основе новых кристаллов. Запуск опытного реактора по американской программе планируется на 2025 год.